BR/Cs*

ORRCWMAL

Decision No.

60071

BEFORE THE PUBLIC UITIITIES COMAISSION OF TEE STATE GF CAIIFORNLA

In the Matter of the Application OE SOUTEERN CALIFORNIA EDISCN COMPANY for an ozder amendifng General Order No. 95 , 'Ruies for Overbead Elcctric Ine Construction', to permit the use of polyvinyl. cbloride conduit under speciffed conditions.

Application No. 46916
Filed August 24, 1964)

Rollin E. Woodbury, Harry W. Sturges, Jx. John R. Bury, by John R. Bury, for applicant.
F. I. Searls, John C. Morrissey and Ross Workman, by Ross Woikman, for Pacific Gas \& Eicctric Company; Caickerine \& Gregory, by Sheman Chickering, C. Hevien Ames, and Scanley Jewell, 10: San Dieco Gas a Electric Company; Georze porric and thomes B. Hushes, for Division of Incustrial Safety; Patrick J. Burns, for Local Union 18, I.B.E.W.; and M. A. Walters, for Locel Union 1245, Internaticnal Browerhood of Electrical Workers; interested parties.
N. R. Johnson and Eugene S. Jones, for the Comission seaff.

OPINION

By this application changes in General Oxder No. 95 are zequested to permit the expanded use of polyvinyl chloride conduit (PVC) as a suitable protective covering.

The matter was heard before Examiner Pattexson in Los Angelies on Decembex 9, 1954 and January 27, and 28, 1965, and was submitted upon receipt of statements from applicant and the seaff as to the definitive changes each was recomending in Gencral Order No. 95.

In recent years, as improvements have been made fn the synthesis and fabrication of plastic materials, the Comonssion has
authorized the use of certain plastic materials in overhead electric line construction. By Resolution No. E-1088, dated May 1, 1961, the Comission amended Rules $22.2,54.6-C$ and $84.6-3$. The effect of those amendments, as related to supply lines, was to allow the use of plastic pipe made of rigid umplasticized PVC having the properties specified as Type II, High Impact, in the U. S. Department of Comerce Comercial Standard No. CS 207-60, as a suitable protective covering for conductors in lateral and vertical rums. The use of such plastic pipe was restricted to the light loading district, and Schedule 80 was specified for vertical runs on poles and Schedule 40 was specified for lateral runs under crossarms. The designations Schedule 80 and Schedule 40 denote the required dimensions inclucing wall thickness of plastic pipe in various nominal sizes as enumerated in Comercial Standard CS 207-60. Schedule 40 is considered to be a medium wall pipe and Schedule 80 a heavy wall pipe. The standard also specifies dimensions for an extra heavy wall pipe designated as Schedule 120. The dimensions specified in each of these schedules conform to dimensions used for iron and steel pipe. A former U. S. Department of Comerce Comercial Standard CS 237-61 which has now been withdrawn specified a thin wall cype of PVC designated as Scheduile A. Applicant's proposal is to expand the use of Type II, High Impact PVC, so as to permit the use of Schedule A in lateral runs under crossarms; Schedule 40 for use in vertical runs on poles; and Schedule 80 for use as riser condutt in place of ixon or stecl pipe extending fxom underground up to a minimum height of 8 feet on the pole. The proposal also includes the use of schedule A as
a suitable protective covering over metal conduit and the use of $1 / 16$ inch thick plastic moulding as a ground wire covering. In addition the proposal requests that Rule $54.6-\mathrm{D}$ be modified so that a vertical run may extend down a pole to within not less than 6 feet of the ground and terminate in an enclosure such as for a meter or switch and not be treated as a riser.

During the cousse of the proceeding applicant withdrew its request to use plastic moulding for ground wire covering and modified its proposal so as to specify PVC with a minimum wall thickness of $2 / 16$ inch for lateral runs and as a covering over metal conduit rather than the specifications for Schedule A PVC in the withdrawn Comercial Standard CS 237-61.

Applicant presented in Exhiblt 1 the results of tests made on the subject plastic material to determine the effects of exposure to weather, short circuits in wires covered by the plastic, long time overload heat tests and impact by vehicles. It is appiicant's position that the results of these tests demonstrate that FVC materials of the specifications and dimensions described are surtable and will provide safe installations for the uscs requested.

Applicant's chief distribution engineer testified that use of the plastic material could result in substantial economes arising from savings in both labor and material costs and that the favorable cost differential for riser installations would aid in the current rapid expansion of underground facilities.

Pacific Gas and Electric Company and San Diego Ges and Electric Company presented witnesses in support of applicant's proposal.

A Comission staff engineer who administers Gene-al Onder No. 95 made a study of applicant's proposal, analysed the zesults
of tests made on plastic material and presented his conclusions and recomendations in Exhibit 2. He concluded that $1 / 16$ inch PVC moulding is unsuitable for use as a ground wire covering because of its flexibility, expansion when beated, susceptibility to gaff penetration and deformation under impact. He testified further that suitability of the PVC material for conduit use is more dependent on the thickness of the conduit wall than on the schedule number. He recomended that minimum acceptable thickness be establishec of 0.25 inches for risers, 0.15 inches for vertical runs and 0.10 inches for lateral runs. Sis selection of 0.25 -inch wall thickness for risers is based principally upon consideration of strength requirements necessary to resist impacts caused by vebicles striking risers on poles. He noted that as a result of an impact test made by raming test installations with a 4-ton truck, one of the Schedule 80 2-inch diameter PVC risers, havine a minimum wall thickness of 0.218 inches was cxacked. His selection of 0.15 -inch well thickness for vertical rums reflects tae fact that such installations, since they do not extend to the ground level, are not subject to the same possibilities of physical damage as risers. To protect such vertical runs from gaff penetration and possible cimber cut-outs•he recommended that PVC vertical rums be set on spacer blocks. For lateral rus since they are in a protected position underneath crossarms he recommended a lesser minimum woll thickness than for vertical runs but sufficient in his opinion to maintain rigidity under high temperature conditions.

The staff witness indicated that as an alternative to protecting PVC vertical runs by setting them on spacer blocks the ruas couid be excluded from the climbing space. In the statement
filed at the conclusion of the bearing the staff incorporated this alternative by proposing that plastic pipe be installed only outside the climbing space on poles or structures and in addition specified that when the combined diameters of two or more runs or risers exceed 5 inches such rums or risers should be installed on spacer biocks.

In addition, the staff witness testified that in his opinion a vertical gun extending within 8 feet but not less than 6 feet of the ground and temmating in an enclosure whico provides ample mechanical protection to the run would not be detrimental to public safety.

The staff witness also recomended that any changes authorized for Section V "Supply Lines' in the General Order should be paralleled by changes in Section VIII "Communcation Lines".

In considering the record it may be noted that in general the staff's recomendations are more restrictive than applifent's and, in some instances, are more restrictive than the existing requirements of General orcer No. 95. The staff's recomendations seem to be conceraed mainly with insuring that installation of plastic materials will not endanger a lineman either through danger of falling as a result of his climbers glancing off or cutting out of the hard PVC material or danger of electric shoci if his gaff penetrates the PVC material and contacts a conductor or a grounded metal conduit. The record shows that the plastic material is not easily penetrated but that it can with effort be penetrated by z gaff to a depth of almost 0.25 inches.

Use of PVC for vertical runc and risers would generally result in swaller diameter instailations than can be accomplished with other materials, particularly in the upper portion of a metal conduit run which must have an insulating covering. It appears from the record that plastic conduit as smali as $1 / 2$ Inch nominal diametex may be used for some installations. While small diameter
conduit if instalice within the climbing space would present less surface for accidental contact by a lineman, it also because of its small diameter could go unnoticed until accidental contact is made.

According to Exhibit 1, exposure to weather produces increasing embrittlement of PVC with age. There was no specific evaluation of this factor and in the absence of any evidence as to the ultimate effects of embrittlement it will be prudent at this time to continue to restrict the use of PVC to the light loading district and also to require that the plastic pipe have sufficient wall thickness to minimize the effects of eventual embrittlement upon the structural properties of the pipe.

Based upon the entire record we find that use of rigid mplasticized polyvinyl chloride having the properties specified as Type II \#igh Impact, Normal Chemical Resistance in United States Department of Comerce Comercial Standard No. CS 207-60 in the maner and to the extent indicated by the modifications to Generin Order No. 95 incorporated in the following order will result in no undue bazard nor in a lessening of safety to workmen and to the public.

We also find that the extension of a vertical run to within 8 feet but not less than 6 feet of the ground and terminating in an enclosure which provides ample mechanical protection will result in no undue hazard nor in a lessening of safety to worken and to the public.

We conclude that General Oxder No. 95 should be modified to the extent set forth in Appendix A attached to this order.
A. 46916

- BR

II IS ORDERED that this Commission's General Order No. 95 , "Rules for Overhead Electric Line Construction" is modified to the extent set forth in Appendix A attached to this order.

IT IS FURTHER ORDERED that the Secretary shall cause a copy of this order and its Appendix A to be served upon each electric and teleptone utility subject to the jurisdiction of this Comission and further to cause a suitable number of copies to be made available for distribution to such of the general public as may request the same.

The effective date of this order shall be twenty days

Comissionexs

Commis=ioner Will1am M. Benott, being necossarily mbsont, die not partiolpato in tho disposition of this procooding-
suitable protective covering specified in Rule 22.2-C shall bave a minimum wall thickness of 0.15 inches. Such runs shall be located outside of the climbing and working spaces and shall not pass between conductors of different ownership except between the pole pair and at a clearance therefrom of not less than 6 inches.

Vertical runs, whexe encased in grounded non-climbable metal poles, grounded metal conduit, sheath, or shield, shall be treated as risers.

Conductors installed in the form of vertical runs which extend within 8 feet of the ground shall be treated as risers. Runs which terminate in the top of enclosures which afford ample mechanical protection to the runs may extend within 8 feet of the ground but not less than 6 feet of the ground without being treated as risers.

The radial clearances between conductors, specified in Table 2, Cases 16 and 17, are not required between suitably insulated conductors in the same vertical run."
4. Rule 54.6-E RISERS

This rule is amended to read as follows:
"Risers from underground cables or other conductors shall be encased in securely grounded iron or steel pipe (or other covering of equal strength) from the ground line to a level not less than 8 feet above the ground line (see App. G, Fig. 61).

Risers from underground cables may be encased in plastic pipes in lieu of the grounded iron oz steel pipe required by this rule, provided that risers of circuits in excess of 750 volts shall have an effectively grounded metallic shield. Such plastic pipe shall be of material as speciEied in kule 22.2-C, designated as Schedule 80 , with a minimum nominal pipe size of $2-1 / 2$ inches, or Schedule 120 with a minjmum nominal pipe size of 2 inches.

Any riser on the surface of a pole or not more than 18 inches from the center line of a pole shall be covered by a suitable protective covering where within a vertical distance of 8 feet from the level of commication conductors (including cables) or unprotected supply conductors (including leads from the terminal) supported by the same pole or where within a radial distance of 6 feet from conductors not supported by the same pole.

Any riser more than 18 inches from the center line of a pole shall be covered by a suitable protective covering, or by securely supported impregnated fiber conduit without metai pipe, where within a vertical distance of 8 feet from the level of compunication conductors (Including cables)

APFENDIX A

The rules of General Order No. 95 are modified, amended or added to as set forth below:

1. Rule 22.2-C

This rule is amended to read as follows:
PIASTIC PIPE made of rigid umplasticized polyvinyl chloride having the properties and dimensions specified as Type II, Eigh Impact, Normal Chemical Resistance in United States Department of Comerce Commercial Standard No. CS 207-60. The plastic pipe berein specified shall be installed only outside the climbing space on poles or structures within the light loading district as defined in Rule $21.0-C$ and Rule 43 .:
2. Rale 54.6-C LATERAL CONDUCTORS

Paragraph (1) of this rule is amended to read as follows:
(1) CONDUCTORS OF 0-750 VOLTS; Lateral runs of conductors of 0-750 volts may be less than the clearances from center line and surface of pole, and from the surface of crossarm, as specified in Table 1, Cases 8 and 9 , provided such conductors are suitably insulated and placed along the bottom surface of crossarms and are protected by wood moulding or impregnated fiber conduit of thicknesses not less than as specificd in Rule 22.2, or are protected by plastic pipe having the properties of the material designated as Type II in the standard specified in Rule 22.2-C. The plastic pipe shall have a minimum wall thickness of 0.10 inches.:
3. Rule 54.6-D VERTICAI RONS

This rule is amended to read as follows:
"Conductors installed in the form of vertical runs on the surface of poles or not more than 18 inches from the center line of a pole shall be suitably insulated and covered throughout by a suitable protective covering (See Rule 22.2 for the definition of a suitable protective covering). The plastic pipe specified in Rule $22.2-\mathrm{C}$ shall have 2 minimum wall thickness of 0.15 inches. This protective covering is not required over vertical runs in metal conduit attached to metal poles, towers or other structures provided pipe and structure are metallically connected and effectively grounded.

Conductors in the form of vertical runs more than 18 inches from the center line of any pole shall be suitably insulated aind covered by a suitable protective covering or by securely supported impregnated fiber conduit without metal pipe. The

APPENDIX A

or unprotected suppiy conductors (including the leads from the terminal) supported by the same pole or within a radial distance of 6 feet from conductors not supported by the same pole.

The portion of any riser between the insulating covering required on the upper section and the metal ci plastic covering required on the lower section by the foregoing. shall be covexed by the extension of eithex or both of such coverings. Where fiber conduit over metal pipe is used as a protective covering, the fiber conduit shall not extend within 8 feet of the ground inine and shall be installed in a workonalike manner and securely supported in order to prevent it from slipping downard and exposing any upper sections of the metal pipe.

The radial clearances between conductors, specified in Table 2, Cases 16 and 17 , are not required between suitably insulated conductors in the same risex.

Protective covering (suitabje) is not required over risers encased in effectively srounded non-climbable metal poles or in iron or steel pipe attached to a steel pole, tower or other metal structure, provided the iron or steel pipe is effectively grounded and is metallically connected to such metal seructure."
5. Rule 54.8-C (2)

This rule is amended to read as follows:
"(2) ON CIEARANCE CROSSARMS: Supply service drops may be supported on a clearance crossarm at a vertical distance less than 48 inches (specified in Table 2, Case 8, Column D, and Case 9, Colum C) but not less thian 24 inches above or beiow either supply circuits of $0-750$ volts or comunication circuits not supported on a messenger, or above comanication or supply circuits which are supported on a messenfor, p=ovicied the supply service drop unprotected conductors are at least 25 inches horizontally from the center line of the pole or are attachen to suitable brackets (at least 25 inches from center 1 inc of pole) on each end of the clearance arm and carried on the underside of the clearance arm from end to end in fiber or plastic conduit or under wood protective covering as specified in Rule 54.6-C.

The installation of service drops in accordance with this rule will not entail any change in the commaication conductors supported on the pole. (See App. G,Fig. 40.):
6. Rule 84.6-D VERTICAL RUNS

The first paragraph of this rule is amended to read as follows:
-Vertical runs of Commication wires or cables supported on the surface of wood poles or structures, shall be covered by a suitable protective covering (see Rule 22.2) where within a vertical distance of 3 feet above or 6 feet below unprotected supply conductors supported on the same pole or structure. Vertical runs of commuication wires or cables on the surface of a wood pole shall be covered by a suitable protective covering where within a 6 -foot radius of any other pole supporting supply conductors except that those portions of sueh runs which are more than 3 feet above or 6 feet below the level of unprotected supply conductors need not be covered. The plastic pipe specified in Rule 22.-2-C shall have a minimum wall thickness of 0.15 inches. Cable and drop wire runs to or from terminal boxes are excepted from these requirements for covering, undex the following conditions:
The remainder of Rule $84.6-\mathrm{D}$ is unchanged except the following paragraph is added:

Runs which terminate in the top of enclosures which afford ample mechanical protection to the runs may extend within 8 feet of the ground but not less than 6 feet of the ground without being treated as risers.:
7. Rule $84.6-\mathrm{E}$ Risers

The first two paragraphs of this rule are amended to read as follows:
"Risers of wires or underground cables shall be encased in securely grounded iron or steel pipe (or other covering of equal strength) from the ground line to a level not less than 8 feet above the ground line. Risers from underground cables of class c circuits may be encased in plastic pipes in lieu of the grounded iron or steel pipe required by this rule. Such plastic pipe shall be of material as specified in Rule 22.2-C, designated as Schedule 80 , with a minimum nominal pipe size of 2-1/2 inches or Schedule 120, with a minimum nominal pipe size of 2 inches.

Risers shall be covered by a suitable protective covering as defined in Rule 22.2, where within a vertical distance of 3 feet above or 6 feet below the level of umprotected supply conductors supported on the same pole or structure. ${ }^{2}$
A. 46916

APPENDIX A
8. Rule 84.8-D (2)

This rule is amended to read as follows:
(2) ON CIEARANCE CROSSARMS: Commutation service drops may be supported on a clearance crossarm at a vertical distance less than as specified in Table 2, Case 9, Colum C (48 inches), but not less than 24 inches above or below supply circuits of $0-750$ volts, or above supply cables when treated as in Rule 57.8, provided the communication service drop conductors are at least 25 inches horizontally from the center line of pole or are attached to suitable brackets on each end of the clearance arm and carried on the underside of the clearance arm from end to end in fiber or plastic conduit or under wood protective covering as specified in Rule 54.6-C.

Service drops installed in accordance with this rule will not entail any change in the supply conductors supported on the pole."
9. Appendix G, Figure 61

The note in reference to metal conduit on this figure is amended to read as follows:
'Metal conduit ox plastic pipe must be carried at least 8 feet above ground."
(End of Appendix A)

