hh

ORICIMAL

Decision No. \qquad 70489

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA

In the Matter of the Application of PACIFIC GAS AND ELECIRIC COMPANY for an ordex amending General Ordex No. 95 30 as to permit the use of $12 / 20.8 \mathrm{kv}$

Application No. 47540 four-wire wye comon neutral overhead electric distribution lines.
(Electric)
F. T. Searls, John C. Morrissey and Ross Workman, for applicant. Brundidge \& Hackier, by Daniel Feins, assisted by M. A. Walters, for IBEW Local Unions; California Water Service Company, by C. G. Ferguson; California Interstate Teleplione Company, by Harold E. Throp, interested parties. N. $R_{\text {. Johnson, ion }}$ the Comission staff.

$$
\underline{Q} \underline{I} \mathbb{N} \underline{O} \underline{X}
$$

Applicant seeks amendment of General Order No. 95 in order to permit the use of " $12 / 20.8 \mathrm{kv}$ four-wire wye common neutral overhead electric distribution lines." After due notice, public hearing in the matter was held before Examiner Emerson on August 26 and 27, 1965. The mattex is submitted and is ready for decision.

While the specific rule changes proposed are somewhat complex because of their interrelationships, applicant's proposed changes basically involve four propositions, viz.:
a. Reductions of certain existing minimum conductor clearances,
b. Reductions in existing minimum strength and conductor conductivity requirements,
c. The use of a grounded neutral conductor comon to high-voltage ($12 / 20.8 \mathrm{kv}$) and low-voltage ($120 / 240$ volts) circuits, and
d. A pole configuration wherein a single high voitage conductor would be carried at the pole-top position with a transformer connected thereto and with its return conductor comnected to a comon neutral carried at the low-voltage position on the pole.

Until 1932, the use of comon-meutral systems in California was prohibited by this Comoisision's "Rules for Overhead line Construction." In that year, following a number of years of study, the rules of the then General Order No. 64-A were modified to permit use of a comm neutral for primary line voltages not exceeding 5,000 volts and common-neutral systems were constructed in a number of axeas in the State. General Order No. 64-A was superseded by General Order No. 95 in 1942. This latter order, still effective, continues, in the several parts of Rule 59 thereof, the original provisions governing the use of common-neutral systems, including the 5,000 -volt Iifitation.

Primarily because of electric load growth and increased load densicies, comon-neutral systems have virtually disappeared in Callfornia; for it has become economically infeasible to meet such increased loads at the 5,000-volt limitation prescribed by the present rule. Other states do not appear to have such voltage Ifmitation on comon-neutral systems and comon-neutral systems are commonly being used in various parts of the country at voltages as high as $20 / 34.5 \mathrm{kv}$.

Applicant undertook a study to determine the most economical distribution design for supplying suburban areas at high load densities. With much of its present distribution being threewire 12 kv , its study, among other things, revealed that some economic advantage would result if the existing 12 kv distribution were to be converted to $12 / 20.8 \mathrm{kv}$ (four-wire wye): By such conversion, existing distribution circuits would gain greater capacity and applicant's existing 12 kv transformers could be retained in service for use on the bigher voltage lines. In addition, its present overhead distribution circuits, if converted to $12 / 20.8 \mathrm{kv}$ could be more economically tied into, or extended to form, underground distribution circaits in suburban areas.

The rules embodied in General Ordex No. 95, while contributing materially to the high standard of electric service rendered to the public in California, have their greatest fupact on the safety aspects of ilne construction and maintenance. To a great degree they are designed to provide as much protection (to innemen and other worken who must construct, repair, operate and generally maintain overhead Iines) as is reasonably attainable, having in mind that the demands for continuity of electric service to the public require that literally bundreds of linemen daily perform their work on, or while exposed to the hazards of, energized conductors and equipment. Improvements in work methods, protective devices, materials of construction, tools, insulation, and pole-line hardware and appurtenances directly affect progress in the "state of the art" of electric distribution and generally tend to lessen the hazards to which workmen are exposed in their dally work.

Conductor separations, the prohibition or limitation of physical obstructions in climbing and working spaces, and the absence of grounded surfaces at the working levels on poles all contribute towards the safety of the workmen. All of these may be loosely classified as "clearances" and Genexal Order No. 95 is replete with requirements for the same, generally specified as minimums. In nearly all instances, the rules of the General Ordex specify irreducible minimums, determined after many years of professional and expert analyses of construction practices, work methods and nonfatal as well as fatal accidents. In some instances, the utilities in Callfornia have established, by theix own standards, construction practices which provide greatex than the minimum "clearances" specified by this Comission. A vigorous program of inspection by the Comission has, over a period of many ycars, contributed immeasurably to the elimination of bazards and dangerous
practices and has assured adherence to the rules of General Order No. 95; all to the ultimate advantage of the workman and to the public generally.

Three main safety problems are brought to the fore by applicant's proposal in this proceeding. They have to do with the hazards of the physical placement of the comon-neutral conductox; the possible electrical elevation of the comon-neutral conductor above ground potential and the work methods when connecting, disconnecting or replacing transformers and other equipment. These generate the real concern of workmen in this state and the fear that an increase in the present inherent hazards will result if applicant's. proposals are authorized.

With respect to its physical placement, it is noted that elsewhere in the nation, the comon-neutral line conductoz may be carried in any one of a number of positions on the pole. It is not unusual to find it' attached to the surface of pole between cross-arm quarter bzaces. It may also be carried at either or both secondaryand ai primary levels without special identification. In many places it is uninsulated and uncovered throughout its length. In some places it is carried at reduced vertical separation from other primary conductors above. As we understand the testimony in this proceeding, workmen who object to comon-neutral usage anticipate similar placement and treatment in California and fear its consequences. None of these conditions may prevail in California, however, because of our rules which generally provide that obstructions must be kept out of ciimbing and working spaces, that line conductors must be kept appropriate distances from center-line and surface of pole and that exposure of workmen to grounded objects on poles must be leepe to an irreducible minimum. This Comission sees no reason to depart from its long-standing rules to such effect.

With respect to the "voltage" of a comon-nectral conductor, exicting rules in this State provide that such conductor may be consudezed as carrying the same voltage as any of its related sys=em concuctors. Thus, it elther may be considered as carrying 20.8 kv or as carrying 240 volts in a common-neutral comected fourwire wye cireuit of $12 / 20.3 \mathrm{kv}$ comon to a $120 / 240$ volt circuit. like zay ncutral line conductor of eny circuit, it is always considered by the worken as cazrying an electricel potential above that of the eerth to which it may be "grounded". Its "rreuming" is only for purposes 0 E circult stabilization and circuit protection (such as Enuit relaying); thus it, and never the earth, constitutes the circuit's retum conductor. It is as mach a part of an electricel circuit as any of its related phase condectors. If spectal precautions are not calcen, therefore, the comon-reutral conductor mey in fact carry a dangerous potential with respect to earth or cerner "grounced" objects. Rele 59 of General Order No. 05 epeeifics these spe二lal precauミions. Basically, this rule accomplishes three
 the commoneutal conducaor will be reasonably adecuate to carry fütit as well as nompil fuII-Iond currents. second, it ensures chac the potenaizl of the comon-neutrel conductor wili be as nearly that of earth as it is practicable or feasible to obtain in the present state of the art. Thind, ir controls the location of and ideneifies fite location of the comon-neutral concuctor.

In thcory, at iecet, with the special prectices specifiled in 2 zile 55 a comon-ncutral could be relatec to aimst any primary Nssazbution voitzge witizout creating undue hazards to worken or to she public. Practicaily, kowever, a fundamental limitation must be Euced respecting the ability to obtain a "zero potential" common neutial. Because the relatively thin mancle of soli into which ground
A. 47540 , ha
rods are driven is unconsolidated material, composed of variable and complex combinations of chemicals, minerals, alr, organic material, cellulax structuxes and water content, it offers a widely varying resistence to the flow of electric current. A "good": electrical ground is thus not only sometimes difficult to obtain but sometimes impossible. With identical electrical equipment, a "ground" of less than one ohm might be easily obtainable in marshy land, whereas in soil predominantly rocky or composed of desert sand the resistance might be several thousand ohms. Because of such conditions there are some axeas in Callfornia that are wholly unsuitable for comon-neutral distribution systems. In the main such areas are sparsely settled and there is litele, if any, econowic or aesthetic need therein for common-neutral distribution systems. Recognizing the varlability of ground reststance and usuaily obtainable grounds, Rule 59 spectifies speciai practices which, among other things, provide for a grid-work of neutral conductor retun paths, multiplicity of ground connections and the use of water system piping as a means of gaining greater aree contact between grounding electroces and earth. At the time rale 59 was promulgated metallic-pipe water systems were universally used. In recent years, however, water systems have taken to the use of nonmetallic mains to such an extent that today virtually no new water system vises metalific eilstribution mains. There has thus disappeared from the scene a once valued and oftentimes widespread system of grounding electrodes to which electric utilities could connect theix zeutral conductors. In view of the foregoing, it seems readily apparent that Rule 59 needs such revision as will bring it into the focus of present-day conditions and permit of its application to the bigher voltages of today's distribution systems. Applicant's proposal zespecting groumding would lessen existing requirements by
substituting grounds of undetermined resistance values for the 3-1/2 ohm ground resistances specified in Rule 59.4-C. Such proposal is unacceptable. With the increased voltages proposed, the grounding requirements should be strengthened rathex than weakened.

With respect to the third safety problem, that of work methods to be followed in connecting or disconnecting transformers on common-neutral systems, it might suffice to point out that General Order No. 95 is basically a set of rules governing the design of overhead lines and is not intended to govern work methods; yet the safety problem presented is one which will become more prevalent as common-neutral construction becomes more widespread and it thus deserves somewhat greater then ordinary emphasis. On a comon-neutral system the least hazardous method of connecting a transformer to energized lines is similar to that which is followed on oxdinary lines when transformers on different poles are interconnected through their secondaries (banked secondaries). Safety to the customer and to the linemen demands in connectins a transformer: that first, the comon-neutral be connected to the secondary meutral-tap terminal; that second, the jumper from the secondary neutral-tap terminal to the primary neutral terminal be connected; that third, the secondary hot legs be connected, and that lastly, the primaxy hot leg be connected. In disconnecting a transformer: first, discomect the primary hot leg; second, disconnect the jumper from the primary neutral terminal to the secondary neutral-tap terminal; third, disconnect the secondary hot legs; lastly, disconnect the commoneutral from the secondary neutral-tap remminal. When two transformers have their secondaries benked, the

I/ Work methods Eraditionally have been left to the roperating rules" or "safety rules" of the individual utility and oriented to that utility's particular construction standards and operating practices.
ieast hazardous method of disconnecting one transformex is: first, disconnect the secondary hot legs; second, disconnect the primaxy hot leg; third, remove the jumper between the primary neutral terminal and the secondary neutral-tap terminal; lastly, disconnect the comon-neutral from the secondary neutral-tap teminal. Utility operating and safety rules related to comon-nettral systems should clearly and uniformly specify these procedures and Iinemen should be trained to follow them. No transformer shall have its pzimary and secondary windings interconnected internally.

Existing rules require that on a pole which carries neutrals at both primary and secondary levels, the connecting conductor between the two shall br equal in size to the larger of the two neutrals. Applicant proposes to zeduce this conductor size to that of the smaller neutral. While applicant's desire for economy of construction may be laudable, this proposal borders on "pennypinching" at the expense of safety. No such reduction will be authorized.

Existing rules provide (Rule 59.3-D) that on comon-neutral systems there shall be two or more separate and continuous metallic return conductors from each grid section to the source of supply (the substation). They also provide that if only two return conductors are used, each shall have a minimum area of approximately 50 percent of the area of the primary phase conductor of the largest overhead feeder serving the arca, and that if more than two return conductors are used, the current carrying capacity of the return system shall be such that a break in any one path shall leave two or more return paths which, combined, shail have a minimum area of approximately 50 percent of the axca of the paimazy phase conductor of the largestoverhead feeder serving the area, thus providing
adequate current carrying capacity for full-load currents. Applicant proposes to eliminate these requirements. Applicant presented no evidence of sufficient weight to warrant any modification of these requirements.

Applicant proposes to use pole-top configurations, on new construction, consisting of a single conductor on a pole-top pin for single-phase primary and a single conductor on a pole-top pin plus two additional conductors installed on post-type insulators below the pole top with the two additional conductors in a vertical plane i8 inches from center inne of pole for three-phase primaries. Its illustrations of such configurations are shown on Exhiblt F attached to the application. In essence, applicant seeks approval of such illustration. Neither approval nor disapproval of this illustration will be given herein for it is fundamental that the written rules in every instance have precedence over any pictorial illustrations thereof. It is noted, also, that applicant's illustration depicts the use of a large metallic low-voltage rack which is peculiax to its system (having been authorized as a deviation from the low-voltage rack rules), is not authorized for general use in California, and is in fact viewed by Comilssion engineers as being a departure from accepted good practice. It should, therefore, be limited in its appilcation.

In this proceeding, applicant's engineering witness referred to the "nominal" voltage of the circults undex discussion. It seems necessary, therefore, to emphasize the point that by Rule 23.2, "Voltage" means the kighest effective voltage between any two conductors of the circuit concerned. Thus, a circuit energized at 12.1 kv is not a 12.0 kv cireutit, nor is one energized at 21.1 kv a 21.0 kv eircuit. Further, Ruie 14 , respecting the
ifmiting conditions of maximum and minimum values must be considered. In view of the prospective conversion of existing circuits to higher voltages, the provisions of Rule 52.7 (bardware separations) and Rule 53.4 pertaining to bond wire separations as means of preventing or mitigating radio linterference problems which commonly accompany or follow suck conversion should be well noted.

In view of the evidence and in the light of the foregoing discussion of various of its elements, the Comitssion finds:
I. The pubiic interest, including safety to workmen and the publif generally, will not be adversely affected by the use of common-neutral systems up to but not above a circuit voltage of 2I,000 volts.
2. It is reasonable to modify the existing rules of General Oxder No. 95 to provide for the construction and operation of such comon-neutral systems in California.

The Comission concludes that the appilication herein should be granted to the extent set forth in the following order and that in all other respects sald appilcation should be denied.

II IS ORDERED that this Comission's General Order No. 95, "Rules for Overhead Electric Line Construction", be and it is hereby modified to the extent set forth in Appendix. A. attached to this order, said modifications to become effective on the effective date of this order.
A. 47540, hb

II IS FURTHER ORDERED that the Secretary shall cause a copy of this order and its Appendix to be served upon each electric and upon each telephone utility subject to the jurisdiction of this Comilssion and, further, to cause a suitable number of copies to be made available for distribution to such of the general public as may request the same.

The effective date of this order shall be twenty days after the date hereof.

Dated at \qquad San Francisco , California, this \qquad 29% day of \qquad , 1966.

APPENDIX A

The rules of General Order No. 95 are modified, amended or added to as set forth below:

1. Rule 20.7

This rule is amended to read as follows:
"COMMON NETTRAI SYSIEMS mean those electrical supply distribution systems wherein the same specially grounded conductor is utilized as a montral condretor of primary clucrints of less than $2 \mathrm{~L}, 000$ volts and sccondery circtits of $0-750$ voles supplied therefrow."
2. Rule 32.2-A

This rale is mended to read as follows:
nA. SUPELY CIRCUITS OF 750-21,000 VOLTS
Supply circuits of 750-21,000 vöts should zot Ee above supply circuits in excess of 21,000 rolts."
3. Rule 32.4-AI

The first sentence of this rule is amended to read as follows:
"(I) 750-7500 VOLTS AND MORE TEAN 21,000 VOLTS: Supply circuits of 750-7500 volts shall not be cerxied on the same crossarm with circuits of more than 24,000 volts umess the higher voltage circuit is not energized when men are working at this level."
4. Rule 32.4-62

This rule is amended to read as follows:
"(2) 0-750 VOLTS AND MORE THAN 7500 VOLTS: Supply circuits of 0-750 volts shall mot be carried on the same crossarm with circuits of more than 7500 voits, except that, on transformer structures, bus conductors of $0-750$ volts and bus conductors of $7500-21,000$ volts may be supported on opposite ends of the same bus-supporting timbers provided the horizontal separation between conductors of difererent classifiectione supported on the sane arm is not less than $\hat{3}$ inches, tioc bus conduetors of $7500-21,000$ volts axe not extended longitudinally as line conjuctoxs, service drops are not supported on aws which support conductors of $7500-$ 21,000 volts, and concuctors on rejated buek arme are not jess than. 4 Eeet vertically From such bus tituexs."

APPENDIX A

5. Rule 32.4-CI

This rule is amended to read as follows:

```
"(1) 7500-21,000 VOITS, SANE OWNERSHIP: Supply circuits
    of \(7500-21,000\) volts and private comumication
    circuits owned (or leased) and operated and maintained
    by the same organization may be supported on the
    same crossarm as provided in Rule 89.2-A1."
```

6. Rule 33.1

The first sentence of this rule is amended to read as follows:
"Neutral conductors of supply circuits, other than in distribution systems of 21,000 volts or less with common primary and secondary grounded neutrals, shall be considexed as carrying the same voltage as the other conductors of the circuit."
7. Rule 37, Table 1.

The beading of Colum E of Table 1 is amended to read: "Supply conductors and supply cables, 750-21,000 volts."

The beading of Colum F of Tabie 1 is amended to read: "Supply conductors and supply cables, more than 21,000 volts."

References to " 20,000 " volts in footnotes n, p, sid t aro_amerded to read:"21,000 voIts."
8. Rule 38, Table 2.

The heading of Colum F of Table 2 is amended to read " $7,500-$ 21,000 volts."

The heading of column G is amended to read " $21,000-35,000$ volts."

References to " 20,000 " volts in footnotes "r" and "u" are amended to read " 23,000 "' volts.
9. Rule 33.3-B

The first portion of this rule is amended to read as follows:
"Ground connections for equipment of any one of the types listed in Rule $33.3-\mathrm{A}$ shall not be intexconnected with groumd connections for equipment of any other type listed therein, except:
In comon neutral systems the neutiel conductors of 0-750 volt supply circuits and of supply circuits of 750-21,000 volts may be intexconected and grounded in accordance with the provisions of Rule 59; and 11

APPENDIX A

10. Rule 51.6-A

Beginaing with the third paragraph of this rule, the rule
is amended to read as follows:
"The provisions of this Rule, 51.6-A, shall not apply
to the marking of poles at the levels of supply circuits of more than 21,000 volts in rural districts.

See Rule 65 for the marking of towers."
11. Rule 52.4-B2c

This rule is amended to read as follows:
"c) Supporting Conductors of 7500-21,000 Volts at Cextain Locations: At ail crossings over public thoroughfares and at locations adjacent to structures such as water tanks, windmills and buildinss, adjacent to wells, and at similax Iocations, crossarms suptorting conductors of 7500-21,000 volts shall ve marked as high voltage."
12. Rule 52.4B2e

This rule is amended to read as follows:
"e) Supportjng Conductors of 7500-21,000 Volts on the Same Structure With Conductors of 750 Volts or Less: Where, on the same structures in rural districts, crossarms supporting concuctors of 7500-21,000 volts are above conductors of 750 volts or less, the crossarm s'ipporting conductors of 7500-21,000 volts next above the conductors of 750 volts or less shail be marked as high voltage. A11 crosearms supporting conductors of 7500-21,000 volts below conductors of 750 volts or less supported on the same structuras shall be marked as high voltage."
13. Rule $52.4-\mathrm{B} 3$

The first paragraph of this rule is amended to read as follows:
"(3) ON GUARDED METAL POLES: On Latticed metal poles which are guarded with barriers as required in.. Rule 51.6-B, the following crossams shall be marked as high voltage:
Crossarms supporting. cencuctors of 750-7500 volts;
Crossarms supporting conductors of 7500-21,060
volts next above the level of conductors of 7500 volts or Iess;
Crossarms supporting conducters of 7500-21,000 volts below the level of conductors of 7500 volts or Iess; and
Crossanms supporting any conductor of more than 7500 volts within is feet of walls, fire escapes, exits, wirdows and similar objects."

APPENDIX A

14. Rule 54.4-Al

The first sentence of this rule is amended to read:
"(1) ACROSS ARID OR MOUNTAINOUS AREAS: Across arid or mountainous areas supply cixcuits carrying 21,00030,000 volts, inclusive, may have a clearance of less than 30 feet (Table 1, Case 4, Colum F) but not less than 25 feet above ground subject to a reduction of not more than 10 per cent because of temperature and loadiag as specified in Rule 43.10
15. Rule 54.4-A2

The title of this rule is amended to read:
"(2) IN RURAL DISTRICTS, CONDUCTORS OF 750-21,000 VOLTS:"
16. Rule $54.4-\mathrm{Clb}$

The first sentence of this rule is amended to read:
"b) Conductors of 7500-2\%,000 Volts: The 4-foot vertical clearance between conductors of 750021,000 volts, as specified in Table 2, Case 11, Column F, may be reduced to not less than 3 feet, provided all of the following conditions are met:"
17. Rule 54.4-C2a

The astexisked footnote in this rule is amended to read as follows:
"* Voltage classifications for this purpose are:
$0-750$ voles, 750-7500 volts, 7500-21,000 voits, and 21,000 volts and above."
18. Rule 54.4-C4c

The figures " $750-20,000$ voits" in this rule are changed to read" "750-21,000 volts".
19. . Rule 54.4-C6

The tabular values set forth in this rule are amended to read as follows:
"Voltage of

lead wines | Minimum |
| :---: |
| wistance |
| above |

other conductor Ievel

20. Rule 54.4-D2

The figures "7500-20,000 voles" in the second paragraph of this rule are amended to read " $7500-21,000$ volts".
21. Rule 54.4-D8b

The first paragraph of this rule is amended to read as follows:
"b) More than 7500 Volts: A single conductor of a cifcuit of more than 7500 volts may be attached directly to the top of a pole or to a crossam at the top of a pole at a distance less than as specified in Table 1, Case 8, provided no apparatus carried on the pole is connected to the circuit so arranged except lightning arresters, a pole-top switch, or a transformer. Where a transformer is connected to a circuit so arfanged, a vertical cleararce of not less than 30 inches shall be maintained between the primazy conductor directiy above and the thenergized metal parts of the transformer, as specified in Rule 58.3-B3e."
22. Rule 54.4-H2

The first paragraph of this rule is amended to read as follows:
"(2) ATIACHED CONDUCTORS: Unprotected conductors not exceeding 21,000 volts may be supported by attachments to buildings, bridges and other structures. To conductors of $0-750$ volts so supported, the clearances of Table 1, Case 7, Columi B, C and D shall apply. To conductors of $750-21,0 C 0$ volts so supported a minimum horizontal clearance of 8 feet shall apply."
23. Rule 54.4-I

The first sentence of the second paragraph of this rule is amended to read as follows:
"Conductors of $0-21 ; 000$ volts, passing under or through bridges, viaducts or similar structures, may be attached thereto in accordance with the provision of Rule 54.4-iz2."
24. Rule $54.6-\mathrm{A}$

The tabular values in this rule are amended to read as follows:

APPENDIX A
25. Rule 54.6-F

The fourth paragraph of this rule is anended by replacing the parase " (750-20,000 volts in vertical configuration on non-climbable poles)," with the phrase "(750-21,000 volts in vertical configuration on non-cijmbable poles),"
26. Rule 54.7-A4

The first sentence of the third paragraph of this rule is anended to read as follows:
"Pin-type insulators which support inine conductors of 21,000 volts or less may extend not more than onebaif of theix dimeter into the climbing space."
27. Rule $54.9-\mathrm{El}$

The first sentence of this rule is mended to read as follows:
"(1) WITH GUARD ARM BELOW CONDUCTORS OF 750-21,000 VOLTS: The vertical clearance between the top conductor in a rack group and conductors of 750 21,000 volts at the next conductor level above, may be less than 6 feet but shall be not less than 4 feet."
28. Rule 54.9-E4

The figures "7500-20,000 volts" in this rule are amended to read "750-21,000 volts".
29. Rule $56.4-\mathrm{E}$

This rule is amended to read as follows:
"Where passing guys axe less than 15 inches from surface of pole and less than 8 feet below supply conductors of less than 21,000 volts supported on the same pole, such guys shall be sectionalized, in addition to the nomal sectionalization required by Rule 56.6 , by means of insulators in accordance with Rule $56.6-\mathrm{A}$ as though attached to the pole or structure."
30. Rules $56.6-\mathrm{A},: 56.6-\mathrm{B}, 56.6 \mathrm{D}, 56.6 \mathrm{E}$.

In these four rules, each time the figures " 20,000 " appear seid Igrures 2 are amended to read " 21,000 ".

APPENDIX A

3I. Rule 58.3-B3 e (New Rule)
The general order is awended by adding thereto the following new section to Rule 58.3-83:
"e) From 7500-21,000 Volt Conductors Above: The clearance between unenergized metal parts of transformers and 7500-21,000 voIt conductors above shall be not less than 18 inches vertically or 18 inches horizontally except that the vertical clearance shall be not less than 30 inches from a conductor at the top of pole as In Rule 54.4-D8b."
32. Rule $58: 3-\mathrm{B} 4 \mathrm{~b}$

The last limiting condition of this rule is amended to read as follows:
"The vertical ciearance of $0-750$ volt conductors below the lowest point of the transformer primaxy leads is not less than

18 inches for primary leads of $750-7500$ volts, 24 inches for primary leads of $7500-21,000$ volts, and 36 inches for primary leads of $21,000-35,000$ volts."
33. Rule 58.3-E (New Rule)

The general ordex is amended by adding thereto the following new section to Rule 58.3:
"E. CONNECTYONS BETWEEN WINDINGS
Any metalinc connection between the primary and secondary windings of a distribution trensformer (as in common neutial systems) shall be made externally and not within the transformer case."
34. Rule 58.4-B3b

This rule is amended to reac as follows:
"b) From Conductors in Excess of 750 VoIts Below: The vertical ciearance of capacitor and regulator cases and their hangars from the level of conductors in excess of 750 volts below shali not be less than 12 inches for conductors of 750-7500 voits, 18 inches for conductors of $7500-21,000$ yoits,". 24 inches for conductors of $21,000-35,000$ volts."

APPENDIX A
35. Rule 59.2

This rule is amended to read as follows:
"The following rules cover cextain special details for coumon neutrai systems where the neutral conductor is comon to primary circuits of less than 21,000 volts and secondary circuits of $0-750$ volts supplied therefrom. These rules are supplemental to the rules given for suppiy lines in general and to other detailed construction requirements for supply lines."
36. Rule 59.3-B, Table 14

Table 14 in Rule $59.3-B$ is amended by inserting therein a primary conductor size of 715,500 circular mils and a related neutral conductor size of 350,000 circular mils.
37. Rule 59.3-D

This rule is amended to read as follows:
'D. NEUTRAL CONDECTORS
The arrangement and continuity of comon neutral conductors shall corform to the following requirements: Cross ties of the ncutral conductor shail be made to form a continuous interconrected grid metwork and there shall be not less than two separate and continuous metalic return conductors from the grie network to the substation constituting the source of supply thercto.
If two return conductors only are used, eack shell have a minimum conductivity of approximately 50 per cent of the conductivity of the primary phase conductor of the largest overhead feeder serving the area (see table 14 of Rule 59.3-B for minimum sizes).
If more than two return conductors are used the current-carrying capacity of the return system shall be such that a braak in any one path shall leave two or more retum paths which, combined, shall have a minimu conductivity of approximetely 50 per cent of the conductivity of the primary phase conductor of the largest overhead feeder serving the area thus providing adequate currentcaxrying capacity for full load curient (sec Table 14 of Rule 59.3-B for mininu sizes). prinumy neurral conductors or secondary neutral conductors, where eontinuous, may be used as a return 1000 from a comion neutrai provided they are of suffieient current-carrying capacity as specified in Rule 59.3-B and provided that they are grounded throughout in accordance with the requirements for comon neutral line conductors as specified in Rule 59.4-B. Primary or secondary neutral Iine conductors so used shall be carried in their normal primary or secondary positions, respectively."

APPENDIX A
38. Rule 59.4-A2

This rula is amended to read as follows, with sections a) and b; thereof thus being deleted:
"(2) GROUND ELECTRODES: Ground electrodes on common neutrel systems shall be one-piece corrosionresisting metal rods or pipes (or equivaient in physical and electrical properties) not less than 5/8-inch in diometer by 8 feet in length and driven to a minimum depth of 8 feet below the surface of the ground. Pole-bute plates or wrappings shall not be used either in lieu of the aforesaid rods or pipes or as electrodes supplementary thereto.
The driven ground rod, pipe or equivalent shall oe located not less than 2 feet from the surface of the pole. Where two or more such rois are installed, they shall be located at not less then 6-foot centers and the separarion required from the surface of the pole shall not be heid to apply to the connection between rods."
39. Rules $59.4-\mathrm{A} 2 \mathrm{a}$ and $59.4-\mathrm{A} 2 \mathrm{~b}$ are deleted.
40. Rule 59.4-BI

This rulc is mended to reed as follows:
"(1) LOCAIION: The comon neutral grid system shall be grounded at intervals not greater than 1000 feet. On branch circuits extending from a grid, where return loop paths are not available, the comon neutral line conductor shall be grounded at intervals not greater than 500 feet. Each transformer installation on a brarch circuft without a loop return shell be so located that there will be not less than one ground, of a resistance not greater than $3-1 / 2$ ohns, on each side of the tramsformer installation."
41. Rule 59.4-C

The second paragraph of this rule is amended to read as follows:
"On comon neutral systems, each transformer installation on a branch circuit without a loop return shall be so located that there will be not less than one ground, of a resistance not greatex than 3-1/2 ohms on each side of the transfomer installation."
42. Rule 86.4-E

The figure "20,000 volts" in this rule is monded to read "21,000 volts".

APPENDIX A

43. Nule 86. 6-A

Rule 80.6-B Rule 86.6-C Rule $86.6-\mathrm{D}$

In each of these rules, the figures " 20,000 " are amended to read " 21,000 ".
44. Ruile 86.7-A1

Rule 86.7-A2
In each of these rules, the figures " 20,000 " are amended to read " 21,000 ".
45. Ruie 89.2-A

In this zule, the figures " 20,000 " ara amenced to read " 21,000 ".
46. Rule 89.3

In this rule, the figures " $750-20,000$ " are amended to read "750-21,000".
47. Rule 92.1-A

The last line of this rule is amended to read:
"Clycuits of $0-21,000$ volts or commaication circưts ... 4 feet"
48. Appendix G

Wherever the figures " 20,000 " appear in the $111 u s t r a-$ tions set forth in Appendix G, said figures are amended to read " 21,000 ".

- END OF AMENDMENTS -

