

Pumped Storage Project Development

PG&E Photo: Helms Pumped Storage Project

CPUC Staff Briefing, April 2010 - Confidential

- Why Energy Storage?
- Why Pumped Storage?
- Pumped Storage Overview
- PG&E's Pumped Storage Project Development
- Potential Regulatory Path

Why Energy Storage?

CPUC Staff Briefing, April 2010 - Confidential

- FERC Notice of Inquiry, Variable Energy Resources
- CAISO 33% Renewable Integration Study, Assesses the incremental integration requirements of different 33% RPS portfolios
 - Calculates the flexible resources required to address the variability and forecast uncertainty of variable renewables
 - The study results are intended to provide a perspective of integration requirements and serve as benchmarks against which integration alternatives can be evaluated
 - Mitigation alternatives include energy storage and intermittent generation curtailment
- PG&E is conducting a parallel analysis, using CAISO assumptions when possible, intended to support and help validate CAISO's study

Δ

- Storage of <u>economy energy</u>, (surplus energy) that is sometimes available at night for daily cycling or during Spring snowmelt runoff conditions for seasonal storage.
- A large amount of <u>fast</u> acting <u>spinning reserve and electric system</u> <u>regulation</u> capability, or generating capacity that is immediately available to meet fluctuations in electric demand and provide grid stability.
- Helps alleviate <u>over-generation</u> or minimum load condition by using excess energy to pump water into storage
- <u>Reduces dependence on fossil fueled technologies</u> and their associated greenhouse gas emissions otherwise needed to firm variable resources.
- Provides all of these functions with a very <u>small footprint</u> when compared to a similarly sized conventional hydro project.

- Pumped storage is an established and widely deployed bulk energy storage alternative and can provide significant ancillary services functionality for electric system stability and control.
- However, it takes time to develop, permit, license, and construct pumped storage projects.
- There are multiple storage technologies in development. Incentives can help ongoing development of several technologies to maintain optionality of storage solutions.

Why Pumped Storage? Different Storage Technologies Can Play Different Roles

http://electricitystorage.org/tech/technologies_comparisons_ratings.htm (logarithmic scale)

CPUC Staff Briefing, April 2010 - Confidential

Why Pumped Storage? **Meeting Utility-Scale Needs**

Energy Storage Technologies

PRE

CPUC Staff Briefing, April 2010 - Confidential

- Minimize cost good geology, maximize use of existing infrastructure.
- Maximize value greatest benefit to power supply portfolio and grid reliability.

Redacted		
	Pacific Gas and	
CPUC Staff Briefing, April 2010 - Confidential	recure company.	9

Pumped Storage Overview Mokelumne

Lower Bear River Reservoir

Salt Springs Reservoir

CPUC Staff Briefing, April 2010 - Confidential

- Timing
 - Start FERC Licensing 2011
 - Complete FERC Licensing and CPUC approval 2016-2017
 - Construction 2017-2021
- Cumulative Costs (approximate)
 - \$12 million to get to start of FERC licensing
 - \$50 million to get to completion of FERC licensing and CPUC approval
 - \$5 billion (2021 dollars) to get to commercial operation

- Energy Policy Act, 2005:
 "Advanced transmission technologies" defined as ... including ... energy storage devices (including pumped hydro ..."
- FERC Order 679:
 - Available Incentives include:
 - 1. Abandoned plant cost recovery
 - 2. ROE enhancements
 - 3. Current recovery of construction work in progress (CWIP)
 - 4. Imputed debt-equity structures
 - 5. Accelerated depreciation
 - 6. Other incentives that a project proponent might request
 - Must Demonstrate that Project will either:
 - 7. Ensure reliability; or
 - 8. Reduce the cost of delivered power by reducing transmission congestion

