Status Update: EPRI-PG&E Smart Charging Pilot

2009 - 2011 DR Filing (CPUC D.09-08-027)

Reiko Takemasa Pacific Gas and Electric Company July 22, 2011

Agenda

Project Overview

- o Pilot Scope
- Testing Set-Up
- Test Schedule

Test Results to Date

- EVSE Hardware Testing
- System Testing Results and Insights

Next Steps

- Step 3: Field Testing
- Real World Challenges
- Step 3b: Enhanced Field Testing

Acronym Review

EVSE Electric Vehicle Supply [Service] Equipment

SCMS Smart Charging Management System

PEV
 Plug-in Electric Vehicle

SE Smart Energy [Profile]

AMI Advanced Metering Infrastructure

○ UIQ Utility IQ™

DRM Demand Response Manager

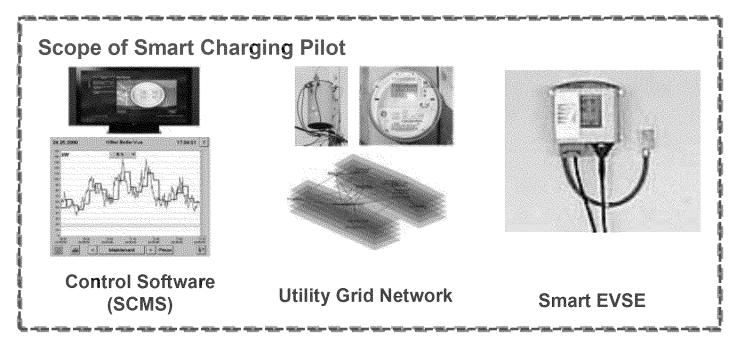
TIC Technology Innovation Center

HAN Home Area Network

PG&E Smart Charging Pilot Overview

Partner: Electric Power Research Institute (EPRI)

Vendors: Coulomb Technologies, Silver Springs Network/Clipper Creek


Pilot Duration: June 2009 – August 2011

Funding: \$1.01M Approved in CPUC D.09-08-027, \$0.6M by PG&E/EPRI

Objective: Evaluate existing EVSE technology from a few vendors and demonstrate that

PG&E can communicate with and control a limited number of Zigbee enabled

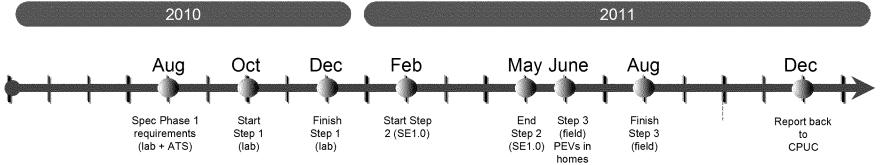
EVSE over AMI both in a lab and field environments.

Out of Scope

On Board PEV Telematics

EVSE Devices Tested

- Clipper Creek EVSE with Silver Spring Networks communication hardware installed.
- Model # DS-100
- Communication modes:
 - AMI network over 900 MHz radio
 - HAN over 2.4 GHz ZigBee radio



- Coulomb Technologies EVSE
- Model # CT-500-CDMA-ZIG
- Communication Modes:
 - Charge Point Network over cellular
 - · HAN over 2.4 GHz ZigBee radio

Recap: DR 2009-2011 Pilot

Step 1:

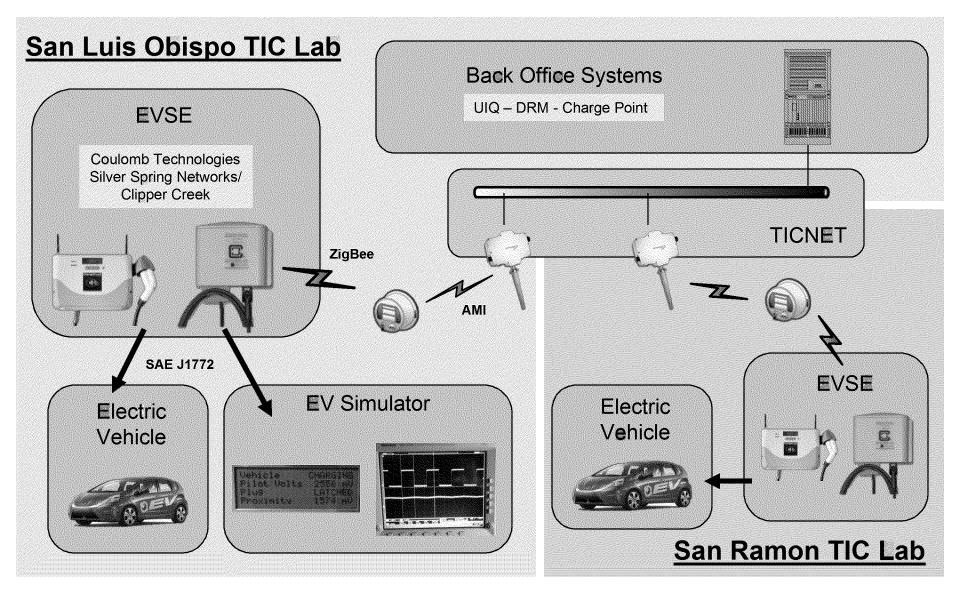
EVSE Control and Functionality

- Supplier selection, procure EVSE
- Test basic on/off/status communication between SSN/Vendor B EVSE and TIC lab (back office simulator)
- Test communication between EVSE and EV (load), back to TIC lab

Step 2:

SEP Communication and DRLC

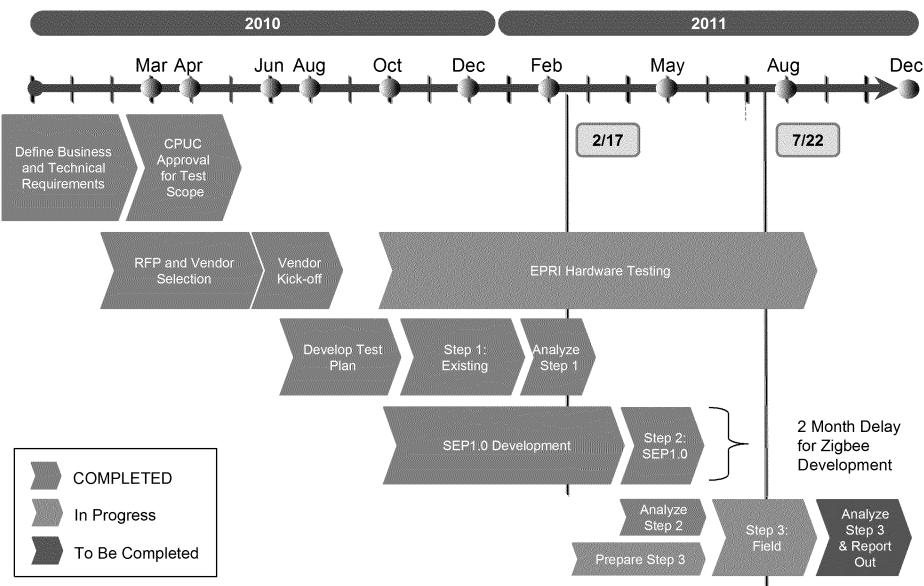
- Test EVSE to SCMS comm using SEP1.0
- Test ability to send basic DR event signals, but excluding pricing data
- Impact study to distribution transformer, and AMI network; excludes non-AMI networks
- Integration into SmartMeter, UIQ, and AMI network


Step 3:

Controlled Simulation in Field

- PG&E locations simulating single residential with attached garage and with adjacent garage
- Technical and customer support
- Installation procedures
- Signal latency and communication robustness study

Test Environment



CPUC - PG&E Confidential (Informational Only)

Smart Charging Pilot Status

Agenda

Project Overview

- o Pilot Scope
- Testing Set-Up
- Test Schedule

Test Results to Date

- EVSE Hardware Testing
- System Testing Results and Insights

Next Steps

- Step 3: Field Testing
- Real World Challenges
- Step 3b: Enhanced Field Testing

EVSE Power Quality Testing

Source: EVSE Power Quality tests performed by EPRI

Test Item	Results		
Cold Load Pickup	Vendor A: Restart times that varied with range of 7 minutes among the 5 tests.		
	Vendor B: Restart times that varied by less than 15 seconds.		
Vehicle Disconnect Protection	Vendor A: 32 ms		
	Vendor B: 83 ms		
Voltage Sag	Vendor A: Contactor stayed close; control signal degraded, but persisted.		
	 Vendor B: Contactor chattered or opened, but charge cycle was not interrupted (contacts closed after sag). 		
Interruption Re-closure	 Vendor A*: Cannot be tested with current version of FW. 		
	 Vendor B: Control signal remains constant; output voltage follows input voltage as expected. Charge cycle was uninterrupted. 		
Over Voltage	Vendor A: No contact chatters or interruptions; performed as expected.		
Sustained Over & Under Voltage	Vendor B: No contact chatters or interruptions; performed as expected.		
Distorted Input Voltage			
Ground Fault Detection	Vendor A: Detected fault immediately and opened main contactor.		
	Vendor B: Only detected the fault at the start of a charging session.		

- *Note: FW version on tested Vendor Adevice has not been upgraded to latest version; current version requires the start button to be pressed to start cycle after contact opens.
- At this point, it is unclear what the performance expectation should be for these devices; do we require standards around minimum performance and feature set?

System Test Results

Test Set	Passed	Failed	Not Completed	Total	% Passed	% Failed	% Not Completed	% Total Executed
Product					200			
EVSE – Vendor A	15	24	2	41	36.6%	58.5%	4.9%	100%
SCMS - Vendor A	18	15	0	33	54.5%	45.5%	0%	100%
EVSE – Vendor B	22	17	2	41	53.6%	41.5%	4.9%	100%
SCMS - Vendor B	23	10	0	33	69.7%	30.3%	0%	100%
OVERALL TOTAL	78	66	4	148	52.7%	44.6%	2.7%	100%

Electric Vehicle Service Equipment (EVSE)

- Both devices can perform basic charging operations.
- Neither device offers the extended features listed in the high level business requirements document.

Smart Charging Management System (SCMS)

- The software tested is not actually full-featured to the point of being called an SCMS.
- Neither software suite offers the extended features listed in the high level business requirements document.

Observations and Insights

Product Features and Operational Guidelines

- Each vendor's product with respect to installation, configuration, and operation are significantly different.
 - For example, when stopping a charge locally at the EVSE by pushing the "Stop" button, the charging session on the Vendor AEVSE stops immediately.
 - Whereas the charging session on the Vendor B EVSE stops after releasing the "Stop" button.
- □ Remote starting of a charging session using the Vendor B EVSE is not possible without local intervention at the EVSE. For the Vendor B EVSE, once a charging session has been terminated (locally or remotely), a subsequent charging session cannot be started until after the EVSE charge connector has been unplugged from the PEV and re-plugged back into the PEV.
- Need to determine EVSE vendors with mass-production design and manufacturing experience and capabilities.

Should there be some level of standardization over product features, installation methods, configuration, and operation?

Should it be coordinated internationally?

Observations and Insights

Interpretation of Standards

- ☐ Vendor B designs their EVSE without the override function.
- ☐ The Vendor B EVSE and Vendor A EVSE respond differently to the Average Load Adjustment Command sent via the HAN to the EVSE.
 - The Vendor B EVSE interprets the adjustment value to be relative to the present load on the EVSE.
 - The Vendor AEVSE interprets the adjustment value to be relative to the maximum allowable load on the EVSE.

Standards need clarification and consistency in interpretation.

Developing Market and Technology

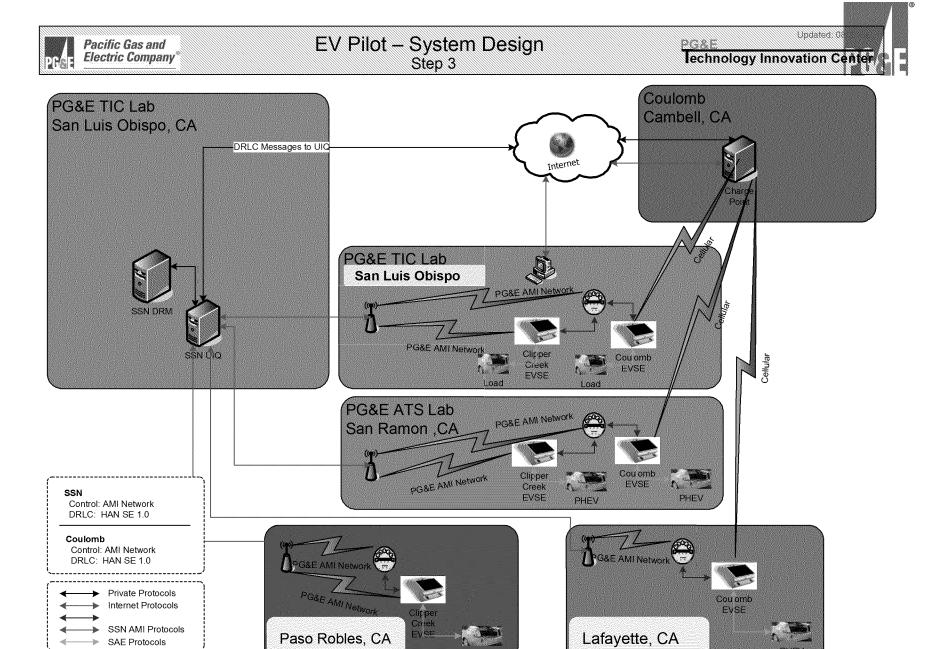
Inside the Vendor AEVSE, the NIC is completely separate from the Vendor Acharge
controller circuitry. Therefore, over-the-air firmware modifications are only possible for
the NIC, and field visit is required to modify the Vendor Ahardware.
The power-on-test sequence of the Vendor AEVSE includes unconditionally closing
the main contactor for approximately 4 seconds, applying 240 VAC to the J-1772
power connector creating a potentially hazardous situation.

☐ At the time of testing, the Vendor B EVSE was more fully developed, having a Webbased portal, for instance.

	Nia itia a a via a al a al a	00140		f ti				ام مرم ما
u	Neither vendor's	201012	provides	torecasting	services	or addredate	PEV	aemana.

Agenda

Project Overview

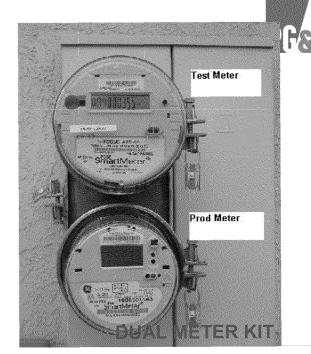

- o Pilot Scope
- Testing Set-Up
- Test Schedule

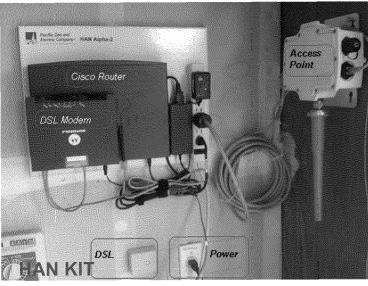
Test Results to Date

- EVSE Hardware Testing
- System Testing Results and Insights

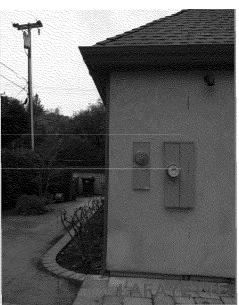
Next Steps

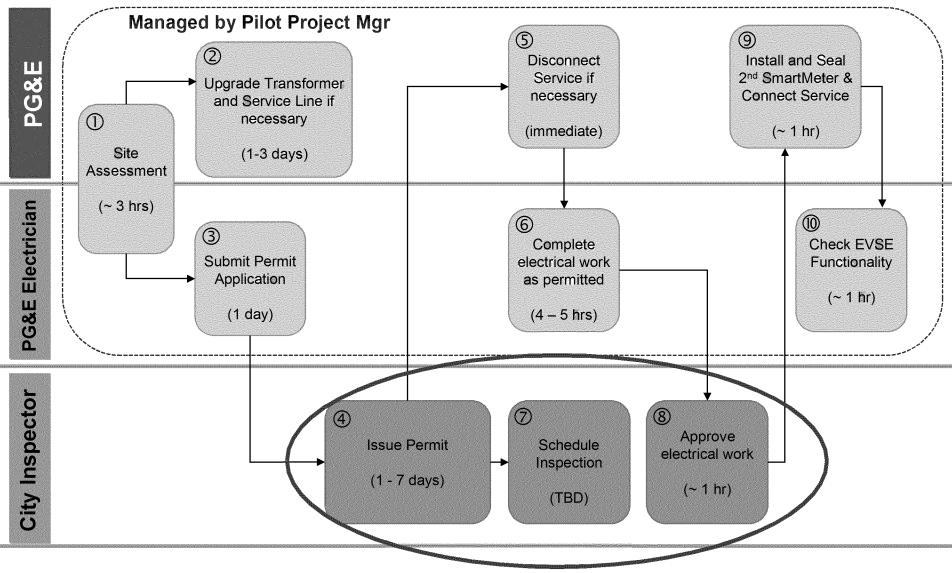
- Step 3: Field Testing
- Real World Challenges
- Step 3b: Enhanced Field Testing



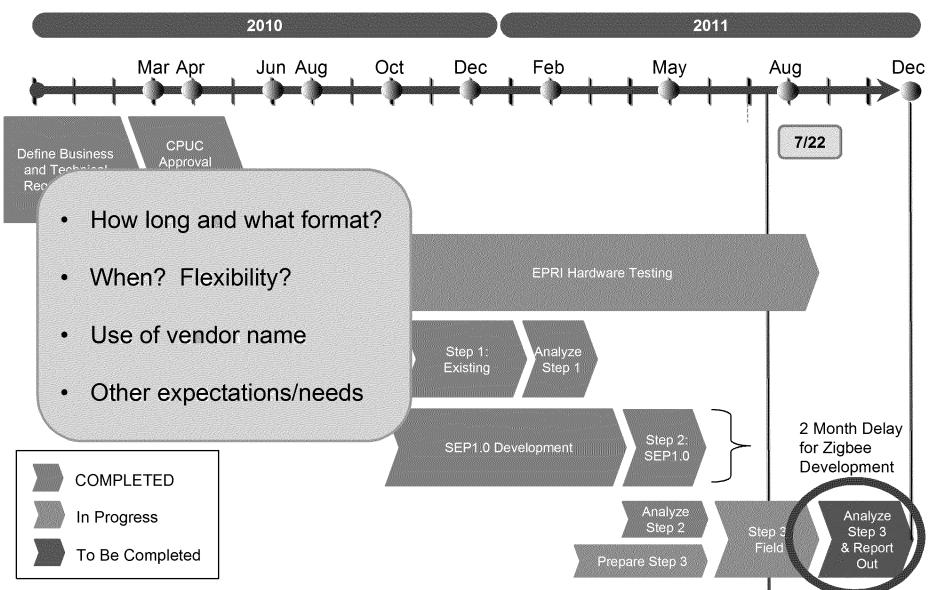

CPUC - PG&E Confidential (Informational Only)

Field Installation





CPUC - PG&E Confidential (Informational Only)


EVSE Installation Challenges

The Last Leg

