Date: April 16, 2012

The following application priorities and definitions are based on informal input/discussion between CPUC Staff, CESA, SCE, PGE, SDGE on April 12, 2012.

Basis for Prioritization

- 1. Magnitude of societal benefits
- 2. Magnitude of direct benefits
- 3. Renewables enablement (key California policy priority)
- 4. Fit with CPUC jurisdictional control
- 5. Availability of commercially ready energy storage technologies
- 6. Ability to be deployed quickly and achieve 'quick wins'

Key Definitions to Standardize in our Language:

- 1. <u>Benefit</u> = 'a single avoided cost and/or revenue which maybe captured by an energy storage system in the context of the grid. Benefits may come from a market revenue (direct market participation), a reduced or deferred cost relative to the status quo or an environmental benefit
- 2. <u>End Use</u> = 'operational use (SCE)' = specific targeted operational use for energy storage in the field, may result in capture of one or more benefits.
- 3. <u>Application</u> = combination of end uses (and benefits) that an energy storage system may capture when sited at a specific place and managed in a particular way (consistent with SCE and CESA's definition)

Proposed Next Steps:

- 1. Obtain informal feedback from IOUs and CPUC staff on this document (Basis for Prioritization, Key Definitions, Application Priorities) target another informal group meeting/conference call end of April/early May 2012 to discuss
- 2. Procedural next steps CPUC can consider issuing an Assigned Commissioner's Ruling to formally close out Phase 1 and kickoff Phase 2 target by ????
- 3. Conduct public workshop introducing application framework, basis for prioritization, definitions and strawman application priorities) target by end of May???
- 4. Complete Phase 2 ASAP! Certainly sooner than what is called for in AB 2514 (October 2013) especially given that the CPUC made this OIR a priority by launching efforts a year ahead of schedule!

#	Application (use case)	Description/Pr oblem Solving	Likely Compensation or Ownership	Likely Siting	Primary End Uses	Status Quo Technology Solution	Commercially Available Energy Storage Solutions	Energy Storage Case Study Example
1	Distribution Deferral (or Equip- ment [#] Life Extension)	Avoids distribution upgrades. Probably rate- based (Not a load modifier) (Example: overloaded wire and/or transformers and/or capacitors)	• Ratebased	 At or down- stream from overloaded equipment Substation Circuit 	 Upgrade Deferral* Replacement Deferral* Electric Supply* Ancillary Services* 	 Conventional Capacity (trans- formers, wires, capacitors) 	 State-of-the-art L/A Advanced L/A NiMH Llon Various flow batteries Thermal Storage (for A/C) Above ground CAES 	 AEP CES Detroit Edison CES Raleigh, NC (TAS Energy)
2	Community Energy Storage [@]	Improve local service reliability. In-lieu of peaking electric supply resources. Avoid/defer adding distribution capacity	• Ratebased	• Adjacent to loads, on utility 'easement'	 Service Reliability* Electric Supply* Ancillary Services* D Deferral* T Congestion* 	 Conventional Capacity (generation, transformers, wires, capacitors) 	 State-of-the-art L/A Advanced L/A NiMH LIon Various flow batteries 	 AEP CES Detroit Edison CES SMUD Solar Smart RES/CES Project

3	Distributed Peaker [@] (Load Modifier)	Distribution Substation level Energy cycling to address peaking needs (½ year operated by utility, ½ year operated by CAISO)	 Market revenue Ratebased 	 Subtransmission Substation 	 Electric Supply* Service Reliability* Ancillary Services* D Deferral* T Congestion* 	 Conventional Generation (CT, CC) PPA Demand Response Critical Peak Pricing (CPP) Energy Efficiency 	 State-of-the-art L/A Advanced L/A NiMH LIon Various flow batteries Above-ground CAES Generation Storage (can be added to cogen facilities so it can change their peak power needs) 	 AEP CES Detroit Edison CES
4	VER-sited (renewables)	Variable RE Generation Integration including generation shifting, firming, smoothing, help with grid interconnection	 Market/higher PPA values Third party 	 At or near RE Generation ✓ Subtransmission ✓ Substation ✓ Distribution 	 Variable RE Generation Integration ✓ energy time- -shift ✓ capacity- firming ✓ ramping ✓ Volt/VAR 	 Additional Sub-T or D Infrastructure Static VAR Compensator (SVC) Switched Capacitor Banks 	 State-of-the-art L/A Advanced L/A NiMH LIon Various flow batteries Flywheels Above ground CAES Generation Storage 	 SMUD Solar Smart RES/CES Project Xtreme Power - various Bulk Solar Therma Generation Storage (molten salt)

A	p	plica	tion	Prior	rities –	Strawman
---	---	-------	------	-------	----------	-----------------

5	Bulk Generation	Electric Supply Capacity/Resour ces	 Ratebased Market Third Party 	• Transmission	 Electric Supply* Ancillary Services* 	 Conventional Generation (CT, CC) PPA Demand Response Critical Peak Pricing (CPP) Energy Efficiency 	 Pumped Hydroelectric Bulk CAES Generation Storage Redox Flow Batteries 	 Utility-owned Pumped Hydro- electric Alabama CAES TAS Energy Generation Storage case study
6	Demand Side Management	End-use Customer Bill Management	 Customer Third-party Market (for ancillary services) 	• Customer-side of Meter	 T.O.U. Energy Cost Management Demand Charge Management Reliability (back-up power) Power Quality Ancillary Services * 	 Energy Efficiency Combined Heat and Power (CHP) Combined Cooling Heat and Power (CCHP) 	 State-of-the-art L/A Advanced L/A NiMH Llon Various flow batteries Thermal () Storage (for A/C) Above-ground CAES Generation Storage on combined heat and power facilities 	 Alameda County Santa Rita Jail Various SGIP funded projects
7	Demand Side	Service	Ratebased	Customer-side of	 Electric Supply* 	Conventional	• State-of-the-art	SCCPA (Ice

DRAFT

Management (or, Behind the Meter Community Energy Storage)	Reliability/ Quality	Third party owned with service contract to utilities	Meter	Service Reliability* • Ancillary Services* • D Deferral* • T Congestion*	Generation (CT, CC) • PPA • Demand Response • Critical Peak Pricing (CPP) • Energy	L/A Advanced L/A NiMH Llon Various flow batteries Above-ground CAES	Energy)
					Efficiency		

Notes

#Heavily loaded transformers and underground cables with slow or no load growth.
*Responds to utility and/or ISO signals.
@Includes resource adequacy in the form of supply capacity and reserves.