Rulemaking:	12-03-014
Exhibit No.:	ISO-14
Witness:	

2013 -2015 Local Capacity Technical Analysis

Final Report and Study Results

2013 LOCAL CAPACITY TECHNICAL ANALYSIS

FINAL REPORT AND STUDY RESULTS

April 30, 2012

Local Capacity Technical Study Overview and Results

I. Executive Summary

This Report documents the results and recommendations of the 2013 Local Capacity Technical (LCT) Study. The LCT Study assumptions, processes, and criteria were discussed and recommended through the 2013 Local Capacity Technical Study Criteria, Methodology and Assumptions Stakeholder Meeting held on November 10, 2011. On balance, the assumptions, processes, and criteria used for the 2013 LCT Study mirror those used in the 2007-2012 LCT Studies, which were previously discussed and recommended through the LCT Study Advisory Group ("LSAG") ¹, an advisory group formed by the CAISO to assist the CAISO in its preparation for performing prior LCT Studies.

The 2013 LCT study results are provided to the CPUC for consideration in its 2013 resource adequacy requirements program. These results will also be used by the CAISO as "Local Capacity Requirements" or "LCR" (minimum quantity of local capacity necessary to meet the LCR criteria) and for assisting in the allocation of costs of any CAISO procurement of capacity needed to achieve the Reliability Standards notwithstanding the resource adequacy procurement of Load Serving Entities (LSEs).²

Please note that these studies assume that SONGS will be fully operational in 2013. At the time this study was completed, SONGS was on an extended forced outage and the expected date that it would return to service was unknown. The ISO will continue to monitor the status of SONGS and reassess the 2013 LCR values, as needed.

¹ The LSAG consists of a representative cross-section of stakeholders, technically qualified to assess the issues related to the study assumptions, process and criteria of the existing LCT Study methodology and to recommend changes, where needed.

² For information regarding the conditions under which the CAISO may engage in procurement of local capacity and the allocation of the costs of such procurement, please see Sections 41 and 43 of the current CAISO Tariff, at: http://www.caiso.com/238a/238acd24167f0.html.

Below is a comparison of the 2013 vs. 2012 total LCR:

2013 Local Capacity Requirements

	Qualifying Capacity			2013 LCR Need Based on Category B			2013 LCR Need Based of Category C with operating procedure		
Local Area Name	QF/ Muni (MW)	Market (MW)	Total (MW)	Existing Capacity Needed	Deficien cy	Total (MW)	Existing Capacity Needed**	Deficien cy	Total (MW)
Humboldt	55	162	217	143	0	143	190	22*	212
North Coast / North Bay	130	739	869	629	0	629	629	0	629
Sierra	1274	765	2039	1408	0	1408	1712	218*	1930
Stockton	216	404	620	242	0	242	413	154*	567
Greater Bay	1368	6296	7664	3479	0	3479	4502	0	4502
Greater Fresno	314	2503	2817	1786	0	1786	1786	0	1786
Kern	684	0	684	295	0	295	483	42*	525
LA Basin	4452	8675	13127	10295	0	10295	10295	0	10295
Big Creek/ Ventura	1179	4097	5276	2161	0	2161	2241	0	2241
San Diego/ Imperial Valley	158	3991	4149	2938	0	2938	2938	144*	3082
Total	9830	27632	37462	23376	0	23376	25189	580	25769

2012 Local Capacity Requirements

	Quali	ifying Ca	apacity	2012 LCR Need Based on Category B			2012 LCR Need Based on Category C with operating procedure		
Local Area Name	QF/ Muni (MW)	Market (MW)	Total (MW)	I Canacity I I Canacity I		Deficien cy	Total (MW)		
Humboldt	54	168	222	159	0	159	190	22*	212
North Coast / North Bay	131	728	859	613	0	613	613	0	613
Sierra	1277	760	2037	1489	36*	1525	1685	289*	1974
Stockton	246	259	505	145	0	145	389	178*	567
Greater Bay	1312	5276	6588	3647	0	3647	4278	0	4278
Greater Fresno	356	2414	2770	1873	0	1873	1899	8*	1907
Kern	602	9	611	180	0	180	297	28*	325
LA Basin	4029	8054	12083	10865	0	10865	10865	0	10865
Big Creek/ Ventura	1191	4041	5232	3093	0	3093	3093	0	3093
San Diego	162	2925	3087	2849	0	2849	2849	95*	2944
Total	9360	24634	33994	24913	36	24949	26158	620	26778

Overall, the LCR needs have decreased by more than 1000 MW or about 4% from 2012 to 2013. The LCR needs have decreased in the following areas: Sierra, Fresno and LA Basin due to downward trend for load; Big Creek/Ventura due to downward trend for load, new transmission projects as well as load allocation change among substations. The LCR needs are steady in Humboldt and Stockton. The LCR needs have slightly increased in North Coast/North Bay, Bay Area and Kern due to load growth; San Diego due to load growth as well as deficiency increase in two small subareas however the total resource capacity needed for San Diego decreased slightly mainly due to changes to the WECC Regional Criteria³ related to the definition of adjacent circuits resulting in the performance requirements for the simultaneous loss of the Sunrise Power Link and South West Power Link being classified as Category D as to compared to a category C event as well as elimination of WECC 1000 MW path rating on Sunrise Power Link. However, over the longer-term, there are expected LCR deficiencies in San Diego area due to the 2017 OTC compliance date for the Encina power plant and to the most restrictive contingency for this area limiting the pool of resources (qualifying capacity) effective in addressing the local area needs. Furthermore the San Diego local area has been expanded to include the Imperial Valley substation because the newly formed local area has higher requirements than the existing San Diego local area alone. The write-up for each Local Capacity Area lists important new projects included in the base cases as well as a description of reason for changes between 2013 and 2012 LCRs.

The ISO has undertaken an LCR assessment of the Valley Electric service area. There are no LCR needs in this new local area due to unavailability of local resources; however there are two constraints that may require local area resources in the future. Detailed results can be found in the Valley Electric section at the end of this report.

_

^{*} No local area is "overall deficient". Resource deficiency values result from a few deficient sub-areas; and since there are no resources that can mitigate this deficiency the numbers are carried forward into the total area needs. Resource deficient sub-area implies that in order to comply with the criteria, at summer peak, load may be shed immediately after the first contingency.

^{**} Since "deficiency" cannot be mitigated by any available resource, the "Existing Capacity Needed" will be split among LSEs on a load share ratio during the assignment of local area resource responsibility.

³ TPL-001-WECC-CRT-2 System Performance Criterion – Effective April 1 2012

The ISO has undertaken a non-summer season LCR assessment of the San Diego area at stakeholder request. These results are for information purposes only and they will not be used to alter the 2013 LSE local resource allocation. The LSE local resource allocation is done based on the summer peak study as required by the ISO Tariff. Detailed results can be found at the end of the San Diego - Imperial Valley area section in this report.

Table of Contents

I. II.		cutive Summarydy Overview: Inputs, Outputs and Options	
A.	1. O	Objectives	6
E	3. <i>K</i>	Tey Study Assumptions	
(C. <i>G</i>	Grid Reliability	8
I	D. A	pplication of N-1, N-1-1, and N-2 Criteria	9
E	E. P	Performance Criteria	9
HIII.	1. 2. Ope	Option 1- Meet LCR Performance Criteria Category B Option 2- Meet LCR Performance Criteria Category C and Incorporate Strational Solutions	16 Suitable 16
P.	1. Sy 1. 2. 3.	Power Flow Assessment: Post Transient Load Flow Assessment: Stability Assessment:	18
E	3. 1. 2.	Load Forecast System Forecast Base Case Load Development Method	19
IV.	C. L	Power Flow Program Used in the LCT analysis	
A.	1. Si	ummary of Study Results	22
E	3. Si	ummary of Zonal Needs	24
(fummary of Results by Local Area. Humboldt Area. North Coast / North Bay Area.	26 26
	3. 4.	Sierra AreaStockton Area	35 47
	5. 6. 7.	Greater Bay Area. Greater Fresno Area. Kern Area.	61
	8. 9. 10.	LA Basin Area Big Creek/Ventura Area San Diego-Imperial Valley Area	84
	11.	Valley Electric Area	

II. Study Overview: Inputs, Outputs and Options

A. Objectives

As was the objective of the five previous annual LCT Studies, the intent of the 2013 LCT Study is to identify specific areas within the CAISO Balancing Authority Area that have limited import capability and determine the minimum generation capacity (MW) necessary to mitigate the local reliability problems in those areas.

B. Key Study Assumptions

1. Inputs and Methodology

The CAISO incorporated into its 2013 LCT study the same criteria, input assumptions and methodology that were incorporated into its previous years LCR studies. These inputs, assumptions and methodology were discussed and agreed to by stakeholders at the 2013 LCT Study Criteria, Methodology and Assumptions Stakeholder Meeting held on November 10, 2011.

The following table sets forth a summary of the approved inputs and methodology that have been used in the previous LCT studies as well as this 2013 LCT Study:

Summary Table of Inputs and Methodology Used in this LCT Study:

Issue:	How are they incorporated into this LCT study:
Input Assumptions:	
Transmission System Configuration	The existing transmission system has been modeled, including all projects operational on or before June 1, of the study year and all other feasible operational solutions brought forth by the PTOs and as agreed to by the CAISO.
☐ Generation Modeled	The existing generation resources has been modeled and also includes all projects that will be on-line and commercial on or before June 1, of the study year
Load Forecast	Uses a 1-in-10 year summer peak load forecast
Methodology:	
☐ Maximize Import Capability	Import capability into the load pocket has been maximized, thus minimizing the generation required in the load pocket to meet applicable reliability requirements.
☐ QF/Nuclear/State/Federal Units	Regulatory Must-take and similarly situated units like QF/Nuclear/State/Federal resources have been modeled on-line at qualifying capacity output values for purposes of this LCT Study.
→ Maintaining Path Flows	Path flows have been maintained below all established path ratings into the load pockets, including the 500 kV. For clarification, given the existing transmission system configuration, the only 500 kV path that flows directly into a load pocket and will, therefore, be considered in this LCR Study is the South of Lugo transfer path flowing into the LA Basin.
Performance Criteria:	
☐ Performance Level B & C, including incorporation of PTO operational solutions	This LCT Study is being published based on Performance Level B and Performance Level C criterion, yielding the low and high range LCR scenarios. In addition, the CAISO will incorporate all new projects and other feasible and CAISO-approved operational solutions brought forth by the PTOs that can be operational on or before June 1, of the study year. Any such solutions that can reduce the need for procurement to meet the Performance Level C criteria will be incorporated into the LCT Study.
Load Pocket:	
Fixed Boundary, including limited reference to published effectiveness factors	This LCT Study has been produced based on load pockets defined by a fixed boundary. The CAISO only publishes effectiveness factors where they are useful in facilitating procurement where excess capacity exists within a load pocket.

Further details regarding the 2013 LCT Study methodology and assumptions are provided in Section III, below.

C. Grid Reliability

Service reliability builds from grid reliability because grid reliability is reflected in the Reliability Standards of the North American Electric Reliability Council (NERC) and the Western Electricity Coordinating Council ("WECC") Regional Criteria (collectively "Reliability Standards"). The Reliability Standards apply to the interconnected electric system in the United States and are intended to address the reality that within an integrated network, whatever one Balancing Authority Area does can affect the reliability of other Balancing Authority Areas. Consistent with the mandatory nature of the Reliability Standards, the CAISO is under a statutory obligation to ensure efficient use and reliable operation of the transmission grid consistent with achievement of the Reliability Standards.⁴ The CAISO is further under an obligation, pursuant to its FERC-approved Transmission Control Agreement, to secure compliance with all "Applicable Reliability Criteria." Applicable Reliability Criteria consists of the Reliability Standards as well as reliability criteria adopted by the CAISO (Grid Planning Standards).

The Reliability Standards define reliability on interconnected electric systems using the terms "adequacy" and "security." "Adequacy" is the ability of the electric systems to supply the aggregate electrical demand and energy requirements of their customers at all times, taking into account physical characteristics of the transmission system such as transmission ratings and scheduled and reasonably expected unscheduled outages of system elements. "Security" is the ability of the electric systems to withstand sudden disturbances such as electric short circuits or unanticipated loss of system elements. The Reliability Standards are organized by Performance Categories. Certain categories require that the grid operator not only ensure that grid integrity is maintained under certain adverse system conditions (e.g., security), but also that all customers continue to receive electric supply to meet demand (e.g., adequacy). In that case, grid reliability and service reliability would overlap. But there are other levels of performance where security can be maintained without ensuring adequacy.

⁻

⁴ Pub. Utilities Code § 345

D. Application of N-1, N-1-1, and N-2 Criteria

The CAISO will maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Criteria at all times, for example during normal operating conditions Category A (N-0) the CAISO must protect for all single contingencies Category B (N-1) and common mode Category C5 (N-2) double line outages. Also, after a single contingency, the CAISO must re-adjust the system to support the loss of the next most stringent contingency. This is referred to as the N-1-1 condition.

The N-1-1 vs N-2 terminology was introduced only as a mere temporal differentiation between two existing NERC Category C events. N-1-1 represents NERC Category C3 ("category B contingency, manual system adjustment, followed by another category B contingency"). The N-2 represents NERC Category C5 ("any two circuits of a multiple circuit tower line") as well as requirement R1.1 of the WECC Regional Criteria ³ ("two adjacent circuits") with no manual system adjustment between the two contingencies.

E. Performance Criteria

As set forth on the Summary Table of Inputs and Methodology, this LCT Report is based on NERC performance level B and performance level C standard. The NERC Standards refer mainly to system being stable and both thermal and voltage limits be within applicable ratings. However, the CAISO also tests the electric system in regards to the dynamic and reactive margin compliance with the existing WECC regional criteria that further specifies the dynamic and reactive margin requirements for the same NERC performance levels. These performance levels can be described as follows:

a. <u>LCR Performance Criteria- Category B</u>

Category B describes the system performance that is expected immediately following the loss of a single transmission element, such as a transmission circuit, a generator, or a transformer.

Category B system performance requires that system is stable and all thermal and voltage limits must be within their "Applicable Rating," which, in this case, are the emergency ratings as generally determined by the PTO or facility owner. Applicable Rating includes a temporal element such that emergency ratings can only be maintained for certain duration. Under this category, load cannot be shed in order to assure the Applicable Ratings are met; however there is no guarantee that facilities are returned to within normal ratings or to a state where it is safe to continue to operate the system in a reliable manner such that the next element out will not cause a violation of the Applicable Ratings.

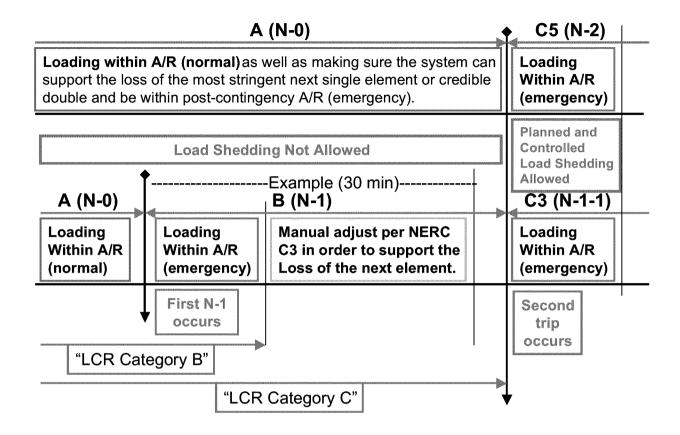
b. <u>LCR Performance Criteria- Category C</u>

The Reliability Standards require system operators to "look forward" to make sure they safely prepare for the "next" N-1 following the loss of the "first" N-1 (stay within Applicable Ratings after the "next" N-1). This is commonly referred to as N-1-1. Because it is assumed that some time exists between the "first" and "next" element losses, operating personnel may make any reasonable and feasible adjustments to the system to prepare for the loss of the second element, including, operating procedures, dispatching generation, moving load from one substation to another to reduce equipment loading, dispatching operating personnel to specific station locations to manually adjust load from the substation site, or installing a "Special Protection Scheme" that would remove pre-identified load from service upon the loss of the "next" element.⁵ All Category C requirements in this report refer to situations when in real time

.

⁵ A Special Protection Scheme is typically proposed as an operational solution that does not require

(N-0) or after the first contingency (N-1) the system requires additional readjustment in order to prepare for the next worst contingency. In this time frame, load drop is not allowed per existing Reliability Standards.


Generally, Category C describes system performance that is expected following the loss of two or more system elements. This loss of two elements is generally expected to happen simultaneously, referred to as N-2. It should be noted that once the "next" element is lost after the first contingency, as discussed above under the Performance Criteria B, N-1-1 scenario, the event is effectively a Category C. As noted above, depending on system design and expected system impacts, the **planned and controlled** interruption of supply to customers (load shedding), the removal from service of certain generators and curtailment of exports may be utilized to maintain grid "security."

c. CAISO Statutory Obligation Regarding Safe Operation

The CAISO will maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Standards at all times, for example during normal operating conditions Category A (N-0) the CAISO must protect for all single contingencies Category B (N-1) and common mode Category C5 (N-2) double line outages. As a further example, after a single contingency the CAISO must readjust the system in order to be able to support the loss of the next most stringent contingency Category C3 (N-1-1).

additional generation and permits operators to effectively prepare for the next event as well as ensure security should the next event occur. However, these systems have their own risks, which limit the extent to which they could be deployed as a solution for grid reliability augmentation. While they provide the value of protecting against the next event without the need for pre-contingency load shedding, they add points of potential failure to the transmission network. This increases the potential for load interruptions because sometimes these systems will operate when not required and other times they will not operate when needed.

Figure 1: Temporal graph of LCR Category B vs. LCR Category C:

The following definitions guide the CAISO's interpretation of the Reliability Standards governing safe mode operation and are used in this LCT Study:

Applicable Rating:

This represents the equipment rating that will be used under certain contingency conditions.

Normal rating is to be used under normal conditions.

<u>Long-term emergency ratings</u>, if available, will be used in all emergency conditions as long as "system readjustment" is provided in the amount of time given (specific to each element) to reduce the flow to within the normal ratings. If not available normal rating is to be used.

Short-term emergency ratings, if available, can be used as long as "system

readjustment" is provided in the "short-time" available in order to reduce the flow to within the long-term emergency ratings where the element can be kept for another length of time (specific to each element) before the flow needs to be reduced the below the normal ratings. If not available long-term emergency rating should be used.

<u>Temperature-adjusted ratings</u> shall not be used because this is a year-ahead study not a real-time tool, as such the worst-case scenario must be covered. In case temperature-adjusted ratings are the only ratings available then the minimum rating (highest temperature) given the study conditions shall be used.

<u>CAISO Transmission Register</u> is the only official keeper of all existing ratings mentioned above.

<u>Ratings for future projects</u> provided by PTO and agree upon by the CAISO shall be used.

<u>Other short-term ratings</u> not included in the CAISO Transmission Register may be used as long as they are engineered, studied and enforced through clear operating procedures that can be followed by real-time operators.

<u>Path Ratings</u> need to be maintained within their limits in order to assure that proper capacity is available in order to operate the system in real-time in a safe operating zone.

Controlled load drop:

This is achieved with the use of a Special Protection Scheme.

Planned load drop:

This is achieved when the most limiting equipment has short-term emergency ratings AND the operators have an operating procedure that clearly describes the actions that need to be taken in order to shed load.

Special Protection Scheme:

All known SPS shall be assumed. New SPS must be verified and approved by the CAISO and must comply with the new SPS guideline described in the CAISO Planning Standards.

System Readjustment:

This represents the actions taken by operators in order to bring the system within a safe operating zone after any given contingency in the system.

Actions that can be taken as system readjustment after a single contingency (Category B):

- System configuration change based on validated and approved operating procedures
- 2. Generation re-dispatch
 - a. Decrease generation (up to 1150 MW) limit given by single contingency SPS as part of the CAISO Grid Planning standards (ISO G4)
 - b. Increase generation this generation will become part of the LCR need

Actions, which shall not be taken as system readjustment after a single contingency (Category B):

 Load drop – based on the intent of the CAISO/WECC and NERC standards for category B contingencies.

This is one of the most controversial aspects of the interpretation of NERC Transmission Planning Standards since footnote b) mentions that load shedding can be done after a category B event in certain local areas in order to maintain compliance with performance criteria. However, the main body of the criteria spells out that no dropping of load should be done following a single contingency. All stakeholders and the CAISO agree that no involuntary interruption of load should be done immediately after a single contingency. Further, the CAISO and stakeholders now agree on the viability of dropping load as part of the system readjustment period – in order to protect for the next most limiting contingency. After a single contingency, it is understood that the system is in a Category B condition and the system should be planned based on the body of the criteria with no shedding of load regardless of whether it is done immediately or in 15-30 minute after the original contingency. Category C conditions only arrive after the second contingency has happened; at that point in time, shedding load is allowed in a planned and controlled manner.

A robust California transmission system should be, and under the LCT Study is being, planned based on the main body of the TPL Standards, and should not be planned based on footnote b) regarding Category B contingencies. Therefore, if there are available resources in the area, they are looked to meet reliability needs (and included in the LCR requirement) before resorting to involuntary load curtailment. The footnote may be applied for criteria compliance issues only where there are no resources available in the area.

Time allowed for manual readjustment:

This is the amount of time required for the operator to take all actions necessary to prepare the system for the next contingency. This time should be less than 30 minutes, based on existing CAISO Planning Standards.

This is a somewhat controversial aspect of the interpretation of existing criteria. This item is very specific in the CAISO Planning Standards. However, some will argue that 30 minutes only allows generation re-dispatch and automated switching where remote control is possible. If remote capability does not exist, a person must be dispatched in the field to do switching and 30 minutes may not allow sufficient time. If approved, an exemption from the existing time requirements may be given for small local areas with very limited exposure and impact, clearly described in operating procedures, and only until remote controlled switching equipment can be installed.

F. The Two Options Presented In This LCT Report

This LCT Study sets forth different solution "options" with varying ranges of potential service reliability consistent with CAISO's Planning Standard. The CAISO applies Option 2 for its purposes of identifying necessary local capacity needs and the corresponding potential scope of its backstop authority. Nevertheless, the CAISO continues to provide Option 1 as a point of reference for the CPUC and Local Regulatory Authorities in considering procurement targets for their jurisdictional LSEs.

1. Option 1- Meet LCR Performance Criteria Category B

Option 1 is a service reliability level that reflects generation capacity that must be available to comply with reliability standards immediately after a NERC Category B given that load cannot be removed to meet this performance standard under Reliability Criteria. However, this capacity amount implicitly relies on load interruption as the **only means** of meeting any Reliability Standard that is beyond the loss of a single transmission element (N-1). These situations will likely require substantial load interruptions in order to maintain system continuity and alleviate equipment overloads prior to the actual occurrence of the second contingency.⁶

2. Option 2- Meet LCR Performance Criteria Category C and Incorporate Suitable Operational Solutions

Option 2 is a service reliability level that reflects generation capacity that is needed to readjust the system to prepare for the loss of a second transmission element (N-1-1) using generation capacity *after* considering all reasonable and feasible operating solutions (including those involving customer load interruption) developed and approved by the CAISO, in consultation with the PTOs. Under this option, there is no expected load interruption to end-use customers under normal or single contingency conditions as the CAISO operators prepare for the second contingency. However, the customer load may be interrupted in the event the second contingency occurs.

As noted, Option 2 is the local capacity level that the CAISO requires to reliably operate the grid per NERC, WECC and CAISO standards. As such, the CAISO recommends adoption of this Option to guide resource adequacy procurement.

III. Assumption Details: How the Study was Conducted

A. System Planning Criteria

6 This potential for pre-contingency load shedding also occurs because real time operators must prepare for the loss of a common mode N-2 at all times.

The following table provides a comparison of system planning criteria, based on the performance requirements of the NERC Reliability Standard, used in the study:

Table 4: Criteria Comparison

Contingency Component(s)	ISO Grid Planning Standard	Old RMR Criteria	Local Capacity Criteria
A – No Contingencies	x	x	X
B – Loss of a single element 1. Generator (G-1) 2. Transmission Circuit (L-1) 3. Transformer (T-1) 4. Single Pole (dc) Line 5. G-1 system readjusted L-1	X X X X	X X X ² X X	χ1 χ1 χ1,2 χ1 χ
C – Loss of two or more elements 1. Bus Section 2. Breaker (failure or internal fault) 3. L-1 system readjusted G-1 3. G-1 system readjusted T-1 or T-1 system readjusted G-1 3. L-1 system readjusted G-1 3. L-1 system readjusted G-1 3. L-1 system readjusted L-1 3. T-1 system readjusted T-1 4. Bipolar (dc) Line 5. Two circuits (Common Mode or Adjacent Circuit) L-2 6. SLG fault (stuck breaker or protection failure) for G-1 7. SLG fault (stuck breaker or protection failure) for T-1 8. SLG fault (stuck breaker or protection failure) for Bus section WECC-R1.2. Two generators (Common Mode) G-2	X X X X X X X X X X X		x x x x x
<u>D – Extreme event – loss of two or more elements</u> Any B1-4 system readjusted (Common Mode or Adjacent Circuit) L-2 All other extreme combinations D1-14.	x4 x4		Х3

¹ System must be able to readjust to a safe operating zone in order to be able to support the loss of the next contingency.

² A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement.

³ Evaluate for risks and consequence, per NERC standards. No voltage collapse or dynamic instability allowed.

⁴ Evaluate for risks and consequence, per NERC standards.

A significant number of simulations were run to determine the most critical contingencies within each Local Capacity Area. Using power flow, post-transient load flow, and stability assessment tools, the system performance results of all the contingencies that were studied were measured against the system performance requirements defined by the criteria shown in Table 4. Where the specific system performance requirements were not met, generation was adjusted such that the minimum amount of generation required to meet the criteria was determined in the Local Capacity Area. The following describes how the criteria were tested for the specific type of analysis performed.

1. Power Flow Assessment:

Contingencies	Thermal Criteria ³	Voltage Criteria ⁴
Generating unit 1,6	Applicable Rating	Applicable Rating
Transmission line 1,6	Applicable Rating	Applicable Rating
Transformer 1,6	Applicable Rating ⁵	Applicable Rating ⁵
(G-1)(L-1) ^{2,6}	Applicable Rating	Applicable Rating
Overlapping 6, 7	Applicable Rating	Applicable Rating

All single contingency outages (i.e. generating unit, transmission line or transformer) will be simulated on Participating Transmission Owners' local area systems.

Key generating unit out, system readjusted, followed by a line outage. This overlapping outage is considered a single contingency within the ISO Grid Planning Criteria. Therefore, load dropping for an overlapping G-1, L-1 scenario is not permitted.

Applicable Rating – Based on ISO Transmission Register or facility upgrade plans including established Path ratings.

Applicable Rating – ISO Grid Planning Criteria or facility owner criteria as appropriate including established Path ratings.

A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement.

⁶ Following the first contingency (N-1), the generation must be sufficient to allow the operators to bring the system back to within acceptable (normal) operating range (voltage and loading) and/or appropriate OTC following the studied outage conditions.

During normal operation or following the first contingency (N-1), the generation must be sufficient to allow the operators to prepare for the next worst N-1 or common mode N-2 without pre-contingency interruptible or firm load shedding. SPS/RAS/Safety Nets may be utilized to satisfy the criteria after the second N-1

or common mode N-2 except if the problem is of a thermal nature such that short-term ratings could be utilized to provide the operators time to shed either interruptible or firm load. T-2s (two transformer bank outages) would be excluded from the criteria.

2. Post Transient Load Flow Assessment:

Contingencies Selected 1

Reactive Margin Criteria ² **Applicable Rating**

If power flow results indicate significant low voltages for a given power flow contingency, simulate that outage using the post transient load flow program. The post-transient assessment will develop appropriate Q/V and/or P/V curves.

Applicable Rating – positive margin based on the higher of imports or load increase by 5% for N-1 contingencies, and 2.5% for N-2 contingencies.

3. Stability Assessment:

Contingencies Selected 1

Stability Criteria ² **Applicable Rating**

Base on historical information, engineering judgment and/or if power flow or post transient study results indicate significant low voltages or marginal reactive margin for a given contingency.

Applicable Rating – ISO Grid Planning Criteria or facility owner criteria as appropriate.

B. Load Forecast

1. System Forecast

The California Energy Commission (CEC) derives the load forecast at the system and Participating Transmission Owner (PTO) levels. This relevant CEC forecast is then distributed across the entire system, down to the local area, division and substation level. The PTOs use an econometric equation to forecast the system load. The predominant parameters affecting the system load are (1) number of households, (2) economic activity (gross metropolitan products, GMP), (3) temperature and (4) increased energy efficiency and distributed generation programs.

2. Base Case Load Development Method

The method used to develop the base case loads is a melding process that extracts, adjusts and modifies the information from the system, distribution and municipal utility forecasts. The melding process consists of two parts: Part 1 deals with the PTO load and Part 2 deals with the municipal utility load. There may be small differences between the methodologies used by each PTO to disaggregate the CEC load forecast to their level of local area as well as bar-bus model.

a. PTO Loads in Base Case

The methods used to determine the PTO loads are, for the most part, similar. One part of the method deals with the determination of the division ⁷ loads that would meet the requirements of 1-in-5 or 1-in-10 system or area base cases and the other part deals with the allocation of the division load to the transmission buses.

i. Determination of division loads

The annual division load is determined by summing the previous year division load and the current division load growth. Thus, the key steps are the determination of the initial year division load and the annual load growth. The initial year for the base case development method is based heavily on recorded data. The division load growth in the system base case is determined in two steps. First, the total PTO load growth for the year is determined, as the product of the PTO load and the load growth rate from the system load forecast. Then this total PTO load growth is allocated to the division, based on the relative magnitude of the load growth projected for the divisions by the distribution planners. For example, for the 1-in-10 area base case, the division load growth determined for the system base case is adjusted to the 1-in-10 temperature using the load temperature relation determined from the latest peak load and temperature data of the division.

_

⁷ Each PTO divides its territory in a number of smaller area named divisions. These are usually smaller and compact areas that have the same temperature profile.

ii. Allocation of division load to transmission bus level

Since the base case loads are modeled at the various transmission buses, the division loads developed must be allocated to those buses. The allocation process is different depending on the load types. For the most part, each PTO classifies its loads into four types: conforming, non-conforming, self-generation and generation-plant loads. Since the non-conforming and self-generation loads are assumed to not vary with temperature, their magnitude would be the same in the system or area base cases of the same year. The remaining load (the total division load developed above, less the quantity of non-conforming and self-generation load) is the conforming load. The remaining load is allocated to the transmission buses based on the relative magnitude of the distribution forecast. The summation of all base case loads is generally higher than the load forecast because some load, i.e., self-generation and generation-plant, are behind the meter and must be modeled in the base cases. However, for the most part, metered or aggregated data with telemetry is used to come up with the load forecast.

b. Municipal Loads in Base Case

The municipal utility forecasts that have been provided to the CEC and PTOs for the purposes of their base cases were also used for this study.

C. Power Flow Program Used in the LCT analysis

The technical studies were conducted using General Electric's Power System Load Flow (GE PSLF) program version 17.0. This GE PSLF program is available directly from GE or through the Western System Electricity Council (WECC) to any member.

To evaluate Local Capacity Areas, the starting base case was adjusted to reflect the latest generation and transmission projects as well as the one-in-ten-year peak load forecast for each Local Capacity Area as provided to the CAISO by the PTOs.

Electronic contingency files provided by the PTOs were utilized to perform the numerous contingencies required to identify the LCR. These contingency files include remedial action and special protection schemes that are expected to be in operation

during the year of study. An CAISO created EPCL (a GE programming language contained within the GE PSLF package) routine was used to run the combination of contingencies; however, other routines are available from WECC with the GE PSFL package or can be developed by third parties to identify the most limiting combination of contingencies requiring the highest amount of generation within the local area to maintain power flows within applicable ratings.

IV. Local Capacity Requirement Study Results

A. Summary of Study Results

LCR is defined as the amount of generating capacity that is needed within a Local Capacity Area to reliably serve the load located within this area. The results of the CAISO's analysis are summarized in the Executive Summary Tables.

Table 5: 2013 Local Capacity Needs vs. Peak Load and Local Area Generation

	2013Total LCR (MW)	Peak Load (1 in10) (MW)	2013 LCR as % of Peak Load	Total Dependable Local Area Generation (MW)	2013 LCR as % of Total Area Generation
Humboldt	212	210	101%	217	98%**
North Coast/North Bay	629	1479	43%	869	72%
Sierra	1930	1738	111%	2039	95%**
Stockton	567	1109	51%	620	91%**
Greater Bay	4502	10233	44%	7664	59%
Greater Fresno	1786	3032	59%	2817	63%
Kern	525	1311	40%	584	90%**
LA Basin	10295	19460	53%	13127	78%
Big Creek/Ventura	2241	4596	49%	5276	42%
San Diego	3082	5114	60%	4149	74%**
Total	25,769	48282*	53%*	37,362	69%

Table 6: 2012 Local Capacity Needs vs. Peak Load and Local Area Generation

	2012 Total LCR (MW)		2012 LCR as % of Peak Load	Total Dependable Local Area Generation (MW)	2012 LCR as % of Total Area Generation
Humboldt	212	210	101%	222	95%**
North Coast/North Bay	613	1420	43%	859	71%
Sierra	1974	1816	109%	2037	97%**
Stockton	567	1086	52%	505	112%**
Greater Bay	4278	9954	43%	6588	65%
Greater Fresno	1907	3120	61%	2770	69%**
Kern	325	1110	29%	611	53%**
LA Basin	10865	19931	55%	12083	90%
Big Creek/Ventura	3093	4693	66%	5232	59%
San Diego	2944	4844	61%	3087	95%**
Total	26,778	48184*	56%*	33,994	79%

^{*} Value shown only illustrative, since each local area peaks at a time different from the system coincident peak load.

Tables 5 and 6 shows how much of the Local Capacity Area load is dependent on local generation and how much local generation must be available in order to serve the load in those Local Capacity Areas in a manner consistent with the Reliability Criteria. These tables also indicate where new transmission projects, new generation additions or demand side management programs would be most useful in order to reduce the dependency on existing, generally older and less efficient local area generation.

The term "Qualifying Capacity" used in this report is the latest "Net Qualifying Capacity" ("NQC") posted on the CAISO web site at:

http://www.caiso.com/1796/179688b22c970.html

The NQC list includes the area (if applicable) where each resource is located for units already operational. Neither the NQC list nor this report incorporates Demand Side Management programs and their related NQC. Units scheduled to become operational before 6/1/2013 have been included in this 2013 LCR Report and added to

^{**} Generation deficient LCA (or with sub-area that is deficient) – deficiency included in LCR. Generator deficient area implies that in order to comply with the criteria, at summer peak, load may be shed immediately after the first contingency.

the total NQC values for those respective areas (see detail write-up for each area).

The first column, "Qualifying Capacity," reflects two sets of generation. The first set is comprised of generation that would normally be expected to be on-line such as Municipal generation and Regulatory Must-take generation (state, federal, QFs, wind and nuclear units). The second set is "market" generation. The second column, "2013 LCR Requirement Based on Category B" identifies the local capacity requirements, and deficiencies that must be addressed, in order to achieve a service reliability level based on Performance Criteria- Category B. The third column, "2013 LCR Requirement Based on Category C with Operating Procedure", sets forth the local capacity requirements, and deficiencies that must be addressed, necessary to attain a service reliability level based on Performance Criteria-Category C with operational solutions.

B. Summary of Zonal Needs

Based on the existing import allocation methodology, the only major 500 kV constraint not accounted for is path 26 (Midway-Vincent). *The current method allocates capacity on path 26 similar to the way imports are allocated to LSEs.*The total resources needed (based on the latest CEC load forecast) in each the two relevant zones, SP26 and NP26 is:

Zone	Load	15%	(-) Allocated	(-) Allocated	Total Zonal
	Forecast	reserves	imports (MW)	Path 26 Flow	Resource
	(MW)	(MW)	iniports (www)	(MW)	Need (MW)
SP26	28253	4238	-7836	-3750	20905
NP26=NP15+ZP26	21883	3282	-4600	-2902	17663

Where:

Load Forecast is the most recent 1 in 2 CEC forecast for year 2013.

<u>Reserve Margin</u> is the minimum CPUC approved planning reserve margin of 15%.

<u>Allocated Imports</u> are the actual 2012 Available Import Capability for loads in the CAISO control area numbers that are not expected to change much by 2013 because there are no additional import transmission additions to the grid between now and summer of 2013.

<u>Allocated Path 26 flow</u> The CAISO determines the amount of Path 26 transfer capacity available for RA counting purposes after accounting for (1) Existing Transmission Contracts (ETCs) that serve load outside the CAISO Balancing Area ⁸ and (2) loop flow ⁹ from the maximum path 26 rating of 4000 MW (North-to-South) and 3000 MW (South-to-North).

Both NP 26 and SP 26 load forecast, import allocation and zonal results refer to the CAISO Balancing Area only. This is done in order to be consistent with the import allocation methodology.

All resources that are counted as part of the Local Area Capacity Requirements fully count toward the Zonal Need. The local areas of San Diego, LA Basin and Big Creek/Ventura are all situated in SP26 and the remaining local areas are in NP26.

Changes compared to last year's results:

The load forecast went up in Southern California by about 800 MW and up in
Northern California by about 700 MW.
The Import Allocations went down in Southern California by about 1000 MW and
down in Northern California by about 100 MW.
The Path 26 transfer capability has not changed and is not envisioned to change
in the near future. As such, the LSEs should assume that their load/share ratio
allocation for path 26 will stay at the same levels as 2012. If there are any
changes, they will be heavily influenced by the pre-existing "grandfathered
contracts" and when they expire most of the LSEs will likely see their load share
ratio going up, while the owners of these grandfathered contracts may see their
share decreased to the load-share ratio.

⁸ The transfer capability on Path 26 must be derated to accommodate ETCs on Path 26 that are used to serve load outside of the CAISO Balancing Area. These particular ETCs represent physical transmission capacity that cannot be allocated to LSEs within the CAISO Balancing Area.

⁹ "Loop flow" is a phenomenon common to large electric power systems like the Western Electricity Coordinating Council. Power is scheduled to flow point-to-point on a Day-ahead and Hour-ahead basis through the CAISO. However, electric grid physics prevails and the actual power flow in real-time will differ from the pre-arranged scheduled flows. Loop flow is real, physical energy and it uses part of the available transfer capability on a path. If not accommodated, loop flow will cause overloading of lines, which can jeopardize the security and reliability of the grid.

C. Summary of Results by Local Area

Each Local Capacity Area's overall requirement is determined by also achieving each sub-area requirement. Because these areas are a part of the interconnected electric system, the total for each Local Capacity Area is not simply a summation of the sub-area needs. For example, some sub-areas may overlap and therefore the same units may count for meeting the needs in both sub-areas.

1. Humboldt Area

Area Definition

The transmission tie lines into the area include:

- 1) Bridgeville-Cottonwood 115 kV line #1
- 2) Humboldt-Trinity 115 kV line #1
- 3) Willits-Garberville 60 kV line #1
- 4) Trinity-Maple Creek 60 kV line #1

The substations that delineate the Humboldt Area are:

- 1) Bridgeville and Low Gap are in, Cottonwood and First Glen are out
- 2) Humboldt is in, Trinity is out
- 3) Willits and Lytonville are out, Kekawaka and Garberville are in
- 4) Trinity is out, Ridge Cabin and Maple Creek are in

Total 2013 busload within the defined area: 200 MW with 10 MW of losses resulting in total load + losses of 210 MW.

Total units and qualifying capacity available in this area:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNIT ID	LCR SUB- AREA NAME	NQC Comments	CAISO Tag
BLULKE_6_BLUELK	31156	BLUELKPP	12.5	0.00	1	Humboldt 60 kV	Energy Only	Market
BRDGVL_7_BAKER				0.00		None	Not modeled Aug NQC	QF/Selfgen
FAIRHV_6_UNIT	31150	FAIRHAVN	13.8	14.69	1	Humboldt 60 kV	Aug NQC	QF/Selfgen
FTSWRD_7_QFUNTS				0.51		Humboldt 60 kV	Not modeled Aug NQC	QF/Selfgen
HUMBPP_1_UNITS3	31180	HUMB_G1	13.8	16.27	1	None		Market
HUMBPP_1_UNITS3	31180	HUMB_G1	13.8	16.27	2	None		Market

HUMBPP_1_UNITS3	β1180	HUMB_G1	13.8	16.27	3	None		Market
HUMBPP_1_UNITS3	31180	HUMB_G1	13.8	16.27	4	None		Market
HUMBPP_6_UNITS1	31181	HUMB_G2	13.8	16.27	5	Humboldt 60 kV		Market
HUMBPP_6_UNITS1	31181	HUMB_G2	13.8	16.27	6	Humboldt 60 kV		Market
HUMBPP_6_UNITS1	31181	HUMB_G2	13.8	16.27	7	Humboldt 60 kV		Market
HUMBPP_6_UNITS2	31182	HUMB_G2	13.8	16.27	8	Humboldt 60 kV		Market
HUMBPP_6_UNITS2	31182	HUMB_G2	13.8	16.27	9	Humboldt 60 kV		Market
HUMBPP_6_UNITS2	31182	HUMB_G2	13.8	16.27	10	Humboldt 60 kV		Market
HUMBSB_1_QF				0.00		None	Not modeled Aug NQC	QF/Selfgen
KEKAWK_6_UNIT	31166	KEKAWAK	9.1	0.00	1	Humboldt 60 kV	Aug NQC	QF/Selfgen
LAPAC_6_UNIT	31158	LP SAMOA	12.5	20.00	1	Humboldt 60 kV		QF/Selfgen
PACLUM_6_UNIT	31152	PAC.LUMB	13.8	7.47	1	Humboldt 60 kV	Aug NQC	QF/Selfgen
PACLUM_6_UNIT	31152	PAC.LUMB	13.8	7.47	2	Humboldt 60 kV	Aug NQC	QF/Selfgen
PACLUM_6_UNIT	31153	PAC.LUMB	2.4	4.48	3	Humboldt 60 kV	Aug NQC	QF/Selfgen
WLLWCR_6_CEDRFL				0.02		Humboldt 60 kV	Not modeled Aug NQC	QF/Selfgen

Major new projects modeled:

- 1. Humboldt Reactive Support
- 2. Blue Lake generation project (energy only 0 MW NQC)
- 3. Garberville Reactive Support
- 4. Bridgeville 115/60 kV transformer replacement PG&E maintenance project

Critical Contingency Analysis Summary

Humboldt 60 kV Sub-area:

The most critical contingency for the Humboldt 60 kV Sub-area area is the outage of the Humboldt 115/60 Transformer and one of the gen tie-line connecting the new Humboldt Bay units (on 60 kV side). The area limitation is the overload on the parallel Humboldt 115/60 kV Transformer. This contingency establishes a LCR of 174 MW in 2012 (includes 55 MW of QF/Selfgen generation as well as 22 MW of deficiency) as the minimum capacity necessary for reliable load serving capability within this area.

The most critical single contingency is the outage of the Humboldt 115/60 kV Transformer. The limitation is thermal overload on the parallel Humboldt 115/60 kV Transformer. This limiting contingency establishes a LCR of 125 MW in 2013 (includes 55 MW of QF/Selfgen generation).

Effectiveness factors:

The following table has units within the Humboldt 60 kV Sub-area area with at least 5% effective to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
31156	BLUELKPP	1	78
31150	FAIRHAVN	1	75
31158	LP SAMOA	1	75
31182	HUMB_G3	10	69
31182	HUMB_G3	9	69
31182	HUMB_G3	8	69
31181	HUMB_G2	7	69
31181	HUMB_G2	6	69
31181	HUMB_G2	5	69
31152	PAC.LUMB	1	42
31152	PAC.LUMB	2	42
31153	PAC.LUMB	3	42
31180	HUMB_G1	4	-14
31180	HUMB_G1	3	-14
31180	HUMB_G1	2	-14
31180	HUMB_G1	1	-14

Humboldt overall:

The most critical contingency for the Humboldt area is the outage of the Bridgeville-Cottonwood 115 kV Line overlapping with an outage of one of the tie-line connecting the new Humboldt Bay units on the 115 kV side. The area limitation is the overload on the Humboldt – Trinity 115 kV Line. This contingency establishes a LCR of 190 MW in 2013 (includes 55 MW of QF/Selfgen generation) as the minimum capacity necessary for reliable load serving capability within this area.

For the single contingency, the most critical one is an outage of the Bridgeville-Cottonwood 115 kV Line when one of the Humboldt Bay Power Plant units connected to the 115 kV bus is out of service. The limitation is the overload on the Humboldt – Trinity 115 kV Line. This limiting contingency establishes a LCR of 143 MW in 2013 (includes 55 MW of QF/Selfgen generation).

Effectiveness factors:

The following table has units within the Humboldt Overall system with at least 5% effective to the above-mentioned constraint

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
31156	BLUELKPP	1	65
31180	HUMB_G1	4	64
31180	HUMB_G1	3	64
31180	HUMB_G1	2	64
31180	HUMB_G1	1	64
31150	FAIRHAVN	1	61
31158	LP SAMOA	1	61
31182	HUMB_G3	10	61
31182	HUMB_G3	9	61
31182	HUMB_G3	8	61
31181	HUMB_G2	7	61
31181	HUMB_G2	6	61
31181	HUMB_G2	5	61
31152	PAC.LUMB	1	57
31152	PAC.LUMB	2	57
31153	PAC.LUMB	3	57

Changes compared to last year's results:

The 2013 load and LCR needs remained the same as it they were in 2012.

Humboldt Overall Requirements:

2013QF/Selfgen (MW)Muni (MW)Market (MW)Max. Qualifying Capacity (MW)Available generation550162217

2013	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ¹⁰	143	0	143
Category C (Multiple) ¹¹	190	22	212

-

A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

11 Multiple contingencies mages that the same size of the standards are supported by the standards.

¹¹ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

2. North Coast / North Bay Area

Area Definition

The transmission tie facilities coming into the North Coast/North Bay area are:

- 1) Cortina-Mendocino 115 kV Line
- 2) Cortina-Eagle Rock 115 kV Line
- 3) Willits-Garberville 60 kV line #1
- 4) Vaca Dixon-Lakeville 230 kV line #1
- 5) Tulucay-Vaca Dixon 230 kV line #1
- 6) Lakeville-Sobrante 230 kV line #1
- 7) Ignacio-Sobrante 230 kV line #1

The substations that delineate the North Coast/North Bay area are:

- 1) Cortina is out, Mendocino and Indian Valley are in
- 2) Cortina is out, Eagle Rock, Highlands and Homestake are in
- 3) Willits and Lytonville are in, Garberville and Kekawaka are out
- 4) Vaca Dixon is out Lakeville is in
- 5) Tulucay is in Vaca Dixon is out
- 6) Lakeville is in, Sobrante is out
- 7) Ignacio is in, Sobrante and Crocket are out

Total 2013 busload within the defined area: 1442 MW with 37 MW of losses resulting in total load + losses of 1479 MW.

Total units and qualifying capacity available in this area are shown in the following table:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNIT ID	LCR SUB-AREA NAME	NQC Comments	CAISO Tag
ADLIN_1_UNITS	31435	GEO.ENGY	9.1	8.00	1	Eagle Rock, Fulton, Lakeville		Market
ADLIN_1_UNITS	31435	GEO.ENGY	9.1	8.00	2	Eagle Rock, Fulton, Lakeville		Market
BEARCN_2_UNITS	31402	BEAR CAN	13.8	6.50	1	Fulton, Lakeville		Market
BEARCN_2_UNITS	31402	BEAR CAN	13.8	6.50	2	Fulton, Lakeville		Market
FULTON_1_QF				0.06		Fulton, Lakeville	Not modeled Aug NQC	QF/Selfgen
GEYS11_7_UNIT11	31412	GEYSER11	13.8	65.00	1	Eagle Rock, Fulton, Lakeville		Market
GEYS12_7_UNIT12	31414	GEYSER12	13.8	50.00	1	Fulton, Lakeville		Market
GEYS13_7_UNIT13	31416	GEYSER13	13.8	56.00	1	Lakeville		Market
GEYS14_7_UNIT14	31418	GEYSER14	13.8	50.00	1	Fulton, Lakeville		Market
GEYS16_7_UNIT16	31420	GEYSER16	13.8	49.00	1	Fulton, Lakeville		Market
GEYS17_2_BOTRCK	31421	BOTTLERK	13.8	14.70	1	Fulton, Lakeville		Market
GEYS17_7_UNIT17	31422	GEYSER17	13.8	53.00	1	Fulton, Lakeville		Market

GEYS18_7_UNIT18	31424	GEYSER18	13.8	45.00	1	Lakeville		Market
GEYS20 7 UNIT20	31426	GEYSER20	13.8	40.00	1	Lakeville		Market
GYS5X6_7_UNITS	31406	GEYSR5-6	13.8	40.00	1	Eagle Rock, Fulton, Lakeville		Market
GYS5X6_7_UNITS	31406	GEYSR5-6	13.8	40.00	2	Eagle Rock, Fulton, Lakeville		Market
GYS7X8_7_UNITS	31408	GEYSER78	13.8	38.00	1	Eagle Rock, Fulton, Lakeville		Market
GYS7X8_7_UNITS	31408	GEYSER78	13.8	38.00	2	Eagle Rock, Fulton, Lakeville		Market
GYSRVL_7_WSPRNG				1.68		Fulton, Lakeville	Not modeled Aug NQC	QF/Selfgen
HIWAY_7_ACANYN				0.92		Lakeville	Not modeled Aug NQC	QF/Selfgen
IGNACO_1_QF				0.00		Lakeville	Not modeled Aug NQC	QF/Selfgen
INDVLY_1_UNITS	31436	INDIAN V	9.1	0.54	1	Eagle Rock, Fulton, Lakeville	Aug NQC	QF/Selfgen
MONTPH_7_UNITS	32700	MONTICLO	9.1	3.88	1	Fulton, Lakeville	Aug NQC	QF/Selfgen
MONTPH_7_UNITS	32700	MONTICLO	9.1	3.88	2	Fulton, Lakeville	Aug NQC	QF/Selfgen
MONTPH_7_UNITS	32700	MONTICLO	9.1	0.92	3	Fulton, Lakeville	Aug NQC	QF/Selfgen
NAPA_2_UNIT				0.01		Lakeville	Not modeled Aug NQC	QF/Selfgen
NCPA_7_GP1UN1	38106	NCPA1GY1	13.8	31.00	1	Lakeville	Aug NQC	MUNI
NCPA_7_GP1UN2	38108	NCPA1GY2	13.8	28.00	1	Lakeville	Aug NQC	MUNI
NCPA_7_GP2UN3	38110	NCPA2GY1	13.8	0.00	1	Fulton, Lakeville	Aug NQC	MUNI
NCPA_7_GP2UN4	38112	NCPA2GY2	13.8	52.73	1	Fulton, Lakeville	Aug NQC	MUNI
POTTER_6_UNITS	31433	POTTRVLY	2.4	4.70	1	Eagle Rock, Fulton, Lakeville	Aug NQC	Market
POTTER_6_UNITS	31433	POTTRVLY	2.4	2.25	3	Eagle Rock, Fulton, Lakeville	Aug NQC	Market
POTTER_6_UNITS	31433	POTTRVLY	2.4	2.25	4	Eagle Rock, Fulton, Lakeville	Aug NQC	Market
POTTER_7_VECINO				0.02		Eagle Rock, Fulton, Lakeville	Not modeled Aug NQC	QF/Selfgen
SANTFG_7_UNITS	31400	SANTA FE	13.8	30.00	1	Lakeville		Market
SANTFG_7_UNITS	31400	SANTA FE	13.8	30.00	2	Lakeville		Market
SMUDGO_7_UNIT 1	31430	SMUDGEO1	13.8	37.00	1	Lakeville		Market
SNMALF_6_UNITS	31446	SONMA LF	9.1	4.60	1	Fulton, Lakeville	Aug NQC	QF/Selfgen
UKIAH_7_LAKEMN				1.70		Eagle Rock, Fulton, Lakeville	Not modeled	MUNI
WDFRDF_2_UNITS	31404	WEST FOR	13.8	12.51	1	Fulton, Lakeville		Market
WDFRDF_2_UNITS	31404	WEST FOR	13.8	12.49	2	Fulton, Lakeville		Market
New Unit	31447	S0476	4.2	0	1	Lakeville	Energy Only	Market

Major new projects modeled:

- 1. Lakeville-Ignacio #2 230 kV line
- 2. Fulton-Fitch Mountain 60 kV Line reconductoring

Critical Contingency Analysis Summary

Eagle Rock Sub-area

The most critical contingency is the outage of Cortina-Mendocino 115 kV line and Geysers #5-Geysers #3 115 kV line. The sub-area area limitation is thermal overloading of the Eagle Rock-Cortina 115 kV line. This limiting contingency establishes a LCR of 235 MW in 2013 (includes 2 MW of QF/MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the outage of the Cortina-Mendocino 115 kV line with Geysers 11 generation unit out of service. The sub-area area limitation is thermal overloading of Eagle Rock-Cortina 115 kV line. This limiting contingency establishes a LCR of 215 MW in 2013 (includes 2MW of QF/MUNI generation).

Effectiveness factors:

The following units have at least 5% effective to the above-mentioned constraint:

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
31406	GEYSR5-6	1	38
31406	GEYSR5-6	2	38
31408	GEYSER78	1	38
31408	GEYSER78	2	38
31412	GEYSER11	1	38
31435	GEO.ENGY	1	38
31435	GEO.ENGY	2	38
31433	POTTRVLY	1	36
31433	POTTRVLY	3	36
31433	POTTRVLY	4	36

Fulton Sub-area

The most critical contingency is the outage of Lakeville-Fulton 230 kV line #1 and Fulton-Ignacio 230 kV line #1. The sub-area limitation is thermal overloading of Santa Rosa-Corona 115 kV line #1. This limiting contingency establishes a LCR of 301 MW in 2013 (includes 16 MW of QF and 54 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area. All of the resources needed to meet the Eagle Rock sub-area count towards the Fulton sub-area LCR need.

Effectiveness factors:

The following units have at least 5% effective to the above-mentioned constraint:

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
31404	WEST FOR	2	57
31402	BEAR CAN	1	57
31402	BEAR CAN	2	57
31404	WEST FOR	1	57
31414	GEYSER12	1	57
31418	GEYSER14	1	57
31420	GEYSER16	1	57
31422	GEYSER17	1	57
38110	NCPA2GY1	1	57
38112	NCPA2GY2	1	57
31421	BOTTLERK	1	57
31406	GEYSR5-6	1	31
31406	GEYSR5-6	2	31
31408	GEYSER78	1	31
31408	GEYSER78	2	31
31412	GEYSER11	1	31
31435	GEO.ENGY	1	31
31435	GEO.ENGY	2	31

Lakeville Sub-area

The most limiting contingency is the outage of Vaca Dixon-Tulucay 230 kV line with DEC power plant out of service. The area limitation is thermal overloading of Vaca Dixon-Lakeville 230 kV. This limiting contingency establishes a LCR of 629 MW in 2013 (includes 17 MW of QF and 113 MW of MUNI generation). The LCR resources needed for Eagle Rock and Fulton sub-areas can be counted toward fulfilling the requirement of Lakeville sub-area.

Effectiveness factors:

The following units have at least 5% effective to the above-mentioned constraint:

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
31400	SANTA FE	2	38
31430	SMUDGEO1	1	38
31400	SANTA FE	1	38
31416	GEYSER13	1	38
31424	GEYSER18	1	38
31426	GEYSER20	1	38
38106	NCPA1GY1	1	38
38108	NCPA1GY2	1	38
31447	S0476	1	38
31421	BOTTLERK	1	36
31404	WEST FOR	2	36

BEAR CAN	1	36
BEAR CAN	2	36
WEST FOR	1	36
GEYSER12	1	36
GEYSER14	1	36
GEYSER16	1	36
GEYSER17	1	36
NCPA2GY1	1	36
NCPA2GY2	1	36
SONMA LF	1	36
MONTICLO	1	31
MONTICLO	2	31
MONTICLO	3	31
GEYSR5-6	1	18
GEYSR5-6	2	18
GEYSER78	1	18
GEYSER78	2	18
GEYSER11	1	18
GEO.ENGY	1	18
GEO.ENGY	2	18
POTTRVLY	1	15
POTTRVLY	2	15
POTTRVLY	3	15
	BEAR CAN WEST FOR GEYSER12 GEYSER14 GEYSER16 GEYSER17 NCPA2GY1 NCPA2GY1 NCPA2GY2 SONMA LF MONTICLO MONTICLO MONTICLO GEYSR5-6 GEYSR5-6 GEYSR78 GEYSER78 GEYSER11 GEO.ENGY POTTRVLY	BEAR CAN 2 WEST FOR 1 GEYSER12 1 GEYSER16 1 GEYSER17 1 NCPA2GY1 1 NCPA2GY2 1 SONMA LF 1 MONTICLO 1 MONTICLO 3 GEYSR5-6 1 GEYSR5-6 2 GEYSER78 1 GEYSER78 1 GEYSER78 2 GEYSER78 1 GEYSER78 2 GEYSER11 1 GEO.ENGY 1 GEO.ENGY 2 POTTRVLY 1

Changes compared to last year's results:

The load forecast went up by 59 MW and the LCR need went up by 16 MW.

North Coast/North Bay Overall Requirements:

2013	QF/Selfgen	Muni	Market	Max. Qualifying
	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	17	113	739	869

2013	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ¹²	629	0	629
Category C (Multiple) ¹³	629	0	629

¹² A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission

operations standards.

13 Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

3. Sierra Area

Area Definition

The transmission tie lines into the Sierra Area are:

- 1) Table Mountain-Rio Oso 230 kV line
- 2) Table Mountain-Palermo 230 kV line
- 3) Table Mt-Pease 60 kV line
- 4) Caribou-Palermo 115 kV line
- 5) Drum-Summit 115 kV line #1
- 6) Drum-Summit 115 kV line #2
- 7) Spaulding-Summit 60 kV line
- 8) Brighton-Bellota 230 kV line
- 9) Rio Oso-Lockeford 230 kV line
- 10) Gold Hill-Eight Mile Road 230 kV line
- 11) Lodi STIG-Eight Mile Road 230 kV line
- 12) Gold Hill-Lake 230 kV line

The substations that delineate the Sierra Area are:

- 1) Table Mountain is out Rio Oso is in
- 2) Table Mountain is out Palermo is in
- 3) Table Mt is out Pease is in
- 4) Caribou is out Palermo is in
- 5) Drum is in Summit is out
- 6) Drum is in Summit is out
- 7) Spaulding is in Summit is out
- 8) Brighton is in Bellota is out
- 9) Rio Oso is in Lockeford is out
- 10) Gold Hill is in Eight Mile is out
- 11) Lodi STIG is in Eight Mile Road is out
- 12) Gold Hill is in Lake is out

Total 2013 busload within the defined area: 1639 MW with 99 MW of losses resulting in total load + losses of 1738 MW.

Total units and qualifying capacity available in this area:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNIT ID	LCR SUB-AREA NAME	NQC Comments	CAISO Tag
BELDEN_7_UNIT 1	31784	BELDEN	13.8	115.00	1	South of Palermo, South of Table Mountain	Aug NQC	Market
BIOMAS_1_UNIT 1	32156	WOODLAN D	9.1	22.80	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	QF/Selfgen

BNNIEN_7_ALTAPH	32376	BONNIE N	60	0.67		Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled Aug NQC	Market
BOGUE_1_UNITA1	32451	FREC	13.8	45.00	1	Bogue, Drum-Rio Oso, South of Table Mountain	Aug NQC	Market
BOWMN_6_UNIT	32480	BOWMAN	9.1	2.68	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
BUCKCK_7_OAKFLT				0.87		South of Palermo, South of Table Mountain	Not modeled Aug NQC	Market
BUCKCK_7_PL1X2	31820	BCKS CRK	11	29.00	1	South of Palermo, South of Table Mountain	Aug NQC	Market
BUCKCK_7_PL1X2	31820	BCKS CRK	11	29.00	2	South of Palermo, South of Table Mountain	Aug NQC	Market
CHICPK_7_UNIT 1	32462	CHI.PARK	11.5	38.00	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
COLGAT_7_UNIT 1	32450	COLGATE1	13.8	161.65	1	South of Table Mountain	Aug NQC	MUNI
COLGAT_7_UNIT 2	32452	COLGATE2	13.8	161.68	1	South of Table Mountain	Aug NQC	MUNI
CRESTA_7_PL1X2	31812	CRESTA	11.5	35.00	1	South of Palermo, South of Table Mountain	Aug NQC	Market
CRESTA_7_PL1X2	31812	CRESTA	11.5	35.00	2	South of Palermo, South of Table Mountain	Aug NQC	Market
DAVIS_7_MNMETH				2.04		Drum-Rio Oso, South of Palermo, South of Table Mountain	Not modeled Aug NQC	Market
DEADCK_1_UNIT	31862	DEADWOO D	9.1	0.00	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	MUNI
DEERCR_6_UNIT 1	32474	DEER CRK	9.1	3.61	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
DRUM_7_PL1X2	32504	DRUM 1-2	6.6	13.00	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
DRUM_7_PL1X2	32504	DRUM 1-2	6.6	13.00	2	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
DRUM_7_PL3X4	32506	DRUM 3-4	6.6	13.70	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market

DRUM_7_PL3X4	32506	DRUM 3-4	6.6	13.70	2	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
DRUM_7_UNIT 5	32454	DRUM 5	13.8	49.50	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
DUTCH1_7_UNIT 1	32464	DTCHFLT1	11	22.00	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
DUTCH2_7_UNIT 1	32502	DTCHFLT2	6.9	26.00	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
ELDORO_7_UNIT 1	32513	ELDRADO1	21.6	11.00	1	Placerville, South of Rio Oso, South of Palermo, South of Table Mountain		Market
ELDORO_7_UNIT 2	32514	ELDRADO2	21.6	11.00	1	Placerville, South of Rio Oso, South of Palermo, South of Table Mountain		Market
FMEADO_6_HELLHL	32486	HELLHOLE	9.1	0.54	1	South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
FMEADO_7_UNIT	32508	FRNCH MD	4.2	16.01	1	South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
FORBST_7_UNIT 1	31814	FORBSTWN	11.5	39.00	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	MUNI
GOLDHL_1_QF				0.00		Placerville, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled	QF/Selfgen
GRNLF1_1_UNITS	32490	GRNLEAF1	13.8	5.47	1	Bogue, Drum-Rio Oso, South of Table Mountain	Aug NQC	QF/Selfgen
GRNLF1_1_UNITS	32490	GRNLEAF1	13.8	27.97	2	Bogue, Drum-Rio Oso, South of Table Mountain	Aug NQC	QF/Selfgen
GRNLF2_1_UNIT	32492	GRNLEAF2	13.8	34.00	1	Pease, Drum-Rio Oso, South of Table Mountain	Aug NQC	QF/Selfgen
HALSEY_6_UNIT	32478	HALSEY F	9.1	7.01	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
HAYPRS_6_QFUNTS	32488	HAYPRES+	9.1	0.00	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	QF/Selfgen
HAYPRS_6_QFUNTS	32488	HAYPRES+	9.1	0.00	2	Drum-Rio Oso, South of Palermo, South of Table	Aug NQC	QF/Selfgen

I	I					Mountain		
HIGGNS_7_QFUNTS				0.11		Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled Aug NQC	QF/Selfgen
KANAKA_1_UNIT				0.00		Drum-Rio Oso, South of Table Mountain	Not modeled Aug NQC	MUNI
KELYRG_6_UNIT	31834	KELLYRDG	9.1	10.00	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	MUNI
MDFKRL_2_PROJCT	32456	MIDLFORK	13.8	62.18	1	South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
MDFKRL_2_PROJCT	32456	MIDLFORK	13.8	62.18	2	South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
MDFKRL_2_PROJCT	32458	RALSTON	13.8	84.32	1	South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
NAROW1_2_UNIT	32466	NARROWS1	9.1	6.29	1	South of Table Mountain	Aug NQC	Market
NAROW2_2_UNIT	32468	NARROWS2	9.1	22.59	1	South of Table Mountain	Aug NQC	MUNI
NWCSTL_7_UNIT 1	32460	NEWCSTLE	13.2	0.03	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
OROVIL_6_UNIT	31888	OROVLLE	9.1	4.61	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	QF/Selfgen
OXBOW_6_DRUM	32484	OXBOW F	9.1	6.00	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
PACORO_6_UNIT	31890	PO POWER	9.1	7.56	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	QF/Selfgen
PACORO_6_UNIT	31890	PO POWER	9.1	7.57	2	Drum-Rio Oso, South of Table Mountain	Aug NQC	QF/Selfgen
PLACVL_1_CHILIB	32510	CHILIBAR	4.2	2.18	1	Placerville, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
PLACVL_1_RCKCRE				0.00		Placerville, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled Aug NQC	Market
PLSNTG_7_LNCLND	32408	PLSNT GR	60	1,24		Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Not modeled Aug NQC	Market
POEPH_7_UNIT 1	31790	POE 1	13.8	60.00	1	South of Palermo, South of Table	Aug NQC	Market

	1					Mountain		
POEPH_7_UNIT 2	31792	POE 2	13.8	60.00	1	South of Palermo, South of Table Mountain	Aug NQC	Market
RCKCRK_7_UNIT 1	31786	ROCK CK1	13.8	56.00	1	South of Palermo, South of Table Mountain	Aug NQC	Market
RCKCRK_7_UNIT 2	31788	ROCK CK2	13.8	56.00	1	South of Palermo, South of Table Mountain	Aug NQC	Market
RIOOSO_1_QF				1.12		Drum-Rio Oso, South of Palermo, South of Table Mountain	Not modeled Aug NQC	QF/Selfgen
ROLLIN_6_UNIT	32476	ROLLINSF	9.1	11.09	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	MUNI
SLYCRK_1_UNIT 1	31832	SLY.CR.	9.1	10.36	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	MUNI
SPAULD_6_UNIT 3	32472	SPAULDG	9.1	5.80	3	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
SPAULD_6_UNIT12	32472	SPAULDG	9.1	4.96	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
SPAULD_6_UNIT12	32472	SPAULDG	9.1	4.96	2	Drum-Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
SPI LI_2_UNIT 1	32498	SPILINCF	12.5	10.49	1	Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	QF/Selfgen
STIGCT_2_LODI	38114	Stig CC	13.8	49.50	1	South of Rio Oso, South of Palermo, South of Table Mountain		MUNI
ULTRCK_2_UNIT	32500	ULTR RCK	9.1	20.74	1	Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	QF/Selfgen
WDLEAF_7_UNIT 1	31794	WOODLEAF	13.8	55.00	1	Drum-Rio Oso, South of Table Mountain	Aug NQC	MUNI
WHEATL_6_LNDFIL	32350	WHEATLND	60	1.20		South of Table Mountain	Not modeled Aug NQC	Market
WISE_1_UNIT 1	32512	WISE	12	10.82	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of Table Mountain	Aug NQC	Market
WISE_1_UNIT 2	32512	WISE	12	0.34	1	Placer, Drum-Rio Oso, South of Rio Oso, South of Palermo, South of	Aug NQC	Market

						Table Mountain		
YUBACT_1_SUNSW T	32494	YUBA CTY	9.1	24.80	1	Pease, Drum-Rio Oso, South of Table Mountain	Aug NQC	QF/Selfgen
YUBACT_6_UNITA1	32496	YCEC	13.8	46.00	1	Pease, Drum-Rio Oso, South of Table Mountain		Market
CAMPFW_7_FARWS	32470	CMP.FARW	9.1	4.60	1	South of Table Mountain	No NQC - hist. data	MUNI
NA	32162	RIV.DLTA	9.11	0.00	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	No NQC - hist. data	QF/Selfgen
UCDAVS_1_UNIT	32166	UC DAVIS	9.1	3.50	1	Drum-Rio Oso, South of Palermo, South of Table Mountain	No NQC - hist. data	QF/Selfgen
STIGCT_2_LODIEC	38123	Q267CT1	18	166.00	1	South of Rio Oso, South of Palermo, South of Table Mountain	No NQC - Pmax	MUNI
STIGCT_2_LODIEC	38124	Q267ST1	18	114.00	1	South of Rio Oso, South of Palermo, South of Table Mountain	No NQC - Pmax	MUNI

Major new projects modeled:

- 1. Table Mountain-Rio Oso Reconductor and Tower Upgrade
- 2. Atlantic-Lincoln 115 kV Transmission Upgrade
- 3. Gold Hill Horseshoe 115 kV line Reconductoring
- 4. Palermo-Rio Oso 115 kV Reconductoring
- 5. Lodi Energy Center

Critical Contingency Analysis Summary

South of Table Mountain Sub-area

The most critical contingency is the loss of the Table Mountain-Rio Oso 230 kV and Table Mountain-Palermo double circuit tower line outage. The area limitation is thermal overloading of the Caribou-Palermo 115 kV line. This limiting contingency establishes in 2013 a LCR of 1376 MW (includes 171 MW of QF and 1103 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this area.

The units required for the South of Palermo sub-area satisfy the single contingency

requirement for this sub-area.

Effectiveness factors:

The following table has all units in Sierra area and their effectiveness factor to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr. (%)
31814	FORBSTWN	1	8
31794	WOODLEAF	1	8
31832	SLY.CR.	1	7
31862	DEADWOOD	1	7
31888	OROVLLE	1	6
31890	PO POWER	2	6
31890	PO POWER	1	6
31834	KELLYRDG	1	6
32452	COLGATE2	1	5
32450	COLGATE1	1	5
32466	NARROWS1	1	5
32468	NARROWS2	1	5
32470	CMP.FARW	1	5
32451	FREC	1	5
32490	GRNLEAF1	2	4
32490	GRNLEAF1	1	4
32496	YCEC	1	3
32494	YUBA CTY	1	3
32492	GRNLEAF2	1	3
32156	WOODLAND	1	3
31820	BCKS CRK	1	2
31820	BCKS CRK	2	2
31788	ROCK CK2	1	2
31812	CRESTA	1	2
31812	CRESTA	2	2
31792	POE 2	1	2
31790	POE 1	1	2
31786	ROCK CK1	1	2
31784	BELDEN	1	2
32166	UC DAVIS	1	2
32500	ULTR RCK	1	2
32498	SPILINCF	1	2
32162	RIV.DLTA	1	2
32510	CHILIBAR	1	2
32514	ELDRADO2	1	2
32513	ELDRADO1	1	2
32478	HALSEY F	1	2
32458	RALSTON	1	2
32456	MIDLFORK	1	2

```
32456
       MIDLFORK 2
                        2
38114
       Stig CC
                  1
                        2
       NEWCSTLE 1
                        2
32460
32512
                        2
       WISE
       HELLHOLE 1
                        2
32486
                        2
32508
       FRNCH MD 1
32502
       DTCHFLT2
                        2
                        2
32462
       CHI.PARK
                  1
32464
       DTCHFLT1
                  1
                        1
32454
       DRUM 5
                  1
                        1
32476
                        1
       ROLLINSF
                  1
32484
       OXBOW F
                  1
                        1
32474
       DEER CRK
                  1
                        1
32506
       DRUM 3-4
                  1
                        1
32506
                  2
       DRUM 3-4
                        1
32504
       DRUM 1-2
                  1
                        1
32504
       DRUM 1-2
                  2
                        1
32488
       HAYPRES+
                  1
                        1
32488
       HAYPRES+ 2
                        1
32480
       BOWMAN
                  1
                        1
32472
       SPAULDG
                  1
                        1
32472
       SPAULDG
                  2
                        1
32472
       SPAULDG
                  3
                        1
38123
       Q267CT1
                  1
                        1
38124
       Q267ST1
                        1
```

Colgate Sub-area

No requirements due to the addition of the Atlantic-Lincoln 115 kV transmission upgrade project. If this project is delayed all units within this area (Narrows #1 & #2 and Camp Far West) are needed.

Pease Sub-area

The most critical contingency is the loss of the Palermo-East Nicolaus 115 kV line with Yuba City Energy Center unit out of service. The area limitation is thermal overloading of the Palermo-Pease 115 kV line. This limiting contingency establishes a LCR of 52 MW (includes 59 MW of QF generation) in 2013 as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this area (Greenleaf #2, Yuba City and Yuba City EC) have the same

effectiveness factor.

Bogue Sub-area

No requirement due to the Palermo-Rio Oso Reconductoring Project. If this project is delayed all units within this area (Greenleaf #1 units 1&2 and Feather River EC) are needed.

South of Palermo Sub-area

The most critical contingency is the loss of the Double Circuit Tower Line Table Mountain-Rio Oso and Colgate-Rio Oso 230 kV lines. The area limitation is thermal overloading of the Pease-Rio Oso 115 kV line. This limiting contingency establishes a LCR of 1568 MW (includes 59 MW of QF and 639 MW of Muni generation as well as 204 MW of deficiency) in 2013 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the loss of the Palermo- East Nicolaus 115 kV line with Belden unit out of service. The area limitation is thermal overloading of the Pease-Rio Oso 115 kV line. This contingency establishes in 2013 a LCR of 1247 MW (includes 59 MW of QF and 639 MW of Muni generation).

Effectiveness factors:

All units within the South of Palermo are needed therefore no effectiveness factor is required.

Placerville Sub-area

The most critical contingency is the loss of the Gold Hill-Clarksville 115 kV line followed by loss of the Gold Hill-Missouri Flat #2 115 kV line. The area limitation is thermal overloading of the Gold Hill-Missouri Flat #1 115 kV line. This limiting contingency establishes a LCR of 72 MW (includes 0 MW of QF and Muni generation as well as 48 MW of deficiency) in 2013 as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this area (El Dorado units 1&2 and Chili Bar) are needed therefore no effectiveness factor is required.

Placer Sub-area

The most critical contingency is the loss of the Gold Hill-Placer #1 115 kV line followed by loss of the Gold Hill-Placer #2 115 kV line. The area limitation is thermal overloading of the Drum-Higgins 115 kV line. This limiting contingency establishes a LCR of 81 MW (includes 38 MW of QF and Muni generation as well as 2 MW of deficiency) in 2013 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Gold Hill-Placer #2 115 kV line with Chicago Park unit out of service. The area limitation is thermal overloading of the Drum-Higgins 115 kV line. This limiting contingency establishes a local capacity need of 59 MW (includes 38 MW of QF and Muni generation) in 2013.

Effectiveness factors:

All units within this area (Chicago Park, Dutch Flat#1, Wise units 1&2, Newcastle and Halsey) have the same effectiveness factor.

Drum-Rio Oso Sub-area

The most critical contingency is the loss of the Rio Oso #2 230/115 transformer followed by loss of the Rio Oso-Brighton 230 kV line. The area limitation is thermal overloading of the Rio Oso #1 230/115 kV transformer. This limiting contingency establishes in 2013 a LCR of 522 MW (includes 171 MW of QF and 198 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Rio Oso #2 230/115 transformer. The area limitation is thermal overloading of the Rio Oso #1 230/115 kV transformer. This limiting contingency establishes in 2013 a LCR of 226 MW (includes 171 MW of QF and 198 MW of Muni generation).

Effectiveness factors:

The following table has all units in Drum-Rio Oso sub-area and their effectiveness factor to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr. (%)
32156	WOODLAND	1	22
32490	GRNLEAF1	1	22
32490	GRNLEAF1	2	22
32451	FREC	1	21
32166	UC DAVIS	1	18
32498	SPILINCF	1	15
32502	DTCHFLT2	1	15
32494	YUBA CTY	1	14
32496	YCEC	1	14
32492	GRNLEAF2	1	13
32454	DRUM 5	1	13
32476	ROLLINSF	1	13
32474	DEER CRK	1	13
32504	DRUM 1-2	1	13
32504	DRUM 1-2	2	13
32506	DRUM 3-4	1	13
32506	DRUM 3-4	2	13
32484	OXBOW F	1	13
32472	SPAULDG	3	12
32472	SPAULDG	1	12
32472	SPAULDG	2	12
32488	HAYPRES+	1	12
32480	BOWMAN	1	12
32488	HAYPRES+	2	12
32464	DTCHFLT1	1	11
32162	RIV.DLTA	1	11
32462	CHI.PARK	1	9
32500	ULTR RCK	1	6
31862	DEADWOOD	1	5
31814	FORBSTWN	1	5
31832	SLY.CR.	1	5
31794	WOODLEAF	1	5
32478	HALSEY F	1	2
31888	OROVLLE	1	2
32512	WISE	1	2
31834	KELLYRDG	1	2
31890	PO POWER	1	2
31890	PO POWER	2	2
32460	NEWCSTLE	1	1

South of Rio Oso Sub-area

The most critical contingency is the loss of the Rio Oso-Gold Hill 230 line followed by

loss of the Rio Oso-Lincoln 115 kV line or vice versa. The area limitation is thermal overloading of the Rio Oso-Atlantic 230 kV line. This limiting contingency establishes a LCR of 500 MW (includes 31 MW of QF and 593 MW of Muni generation) in 2013 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The single most critical contingency is the loss of the Rio Oso-Gold Hill 230 line with the Ralston unit out of service. The area limitation is thermal overloading of the Rio Oso-Atlantic 230 kV line. This limiting contingency establishes a LCR of 333 MW (includes 31 MW of QF and 593 MW of Muni generation) in 2013.

Effectiveness factors:

The following table has all units in South of Rio Oso sub-area and their effectiveness factor to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr. (%)
32498	SPILINCF	1	49
32500	ULTR RCK	1	49
32456	MIDLFORK	1	33
32456	MIDLFORK	2	33
32458	RALSTON	1	33
32513	ELDRADO1	1	32
32514	ELDRADO2	1	32
32510	CHILIBAR	1	32
32486	HELLHOLE	1	31
32508	FRNCH MD	1	30
32460	NEWCSTLE	1	26
32478	HALSEY F	1	24
32512	WISE	1	24
38114	Stig CC	1	14
38123	Q267CT	1	14
38124	Q267ST	1	14
32462	CHI.PARK	1	8
32464	DTCHFLT1	1	4

Changes compared to last year's results:

The Sierra Area load forecast went down by 78 MW and the LCR need has decreased by 44 MW.

Sierra Overall Requirements:

2013	QF	Muni	Market	Max. Qualifying	
	(MW)	(MW)	(MW)	Capacity (MW)	
Available generation	171	1103	765	2039	

2013	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need	
Category B (Single) ¹⁴	1408	0	1408	
Category C (Multiple) ¹⁵	1712	218	1930	

4. Stockton Area

Area Definition

The transmission facilities that establish the boundary of the Tesla-Bellota Sub-area are:

- 1) Bellota 230/115 kV Transformer #1
- 2) Bellota 230/115 kV Transformer #2
- 3) Tesla-Tracy 115 kV Line
- 4) Tesla-Salado 115 kV Line
- 5) Tesla-Salado-Manteca 115 kV line
- 6) Tesla-Schulte #1 115 kV Line
- 7) Tesla-Schulte #2 115 kV Line

The substations that delineate the Tesla-Bellota Sub-area are:

- 1) Bellota 230 kV is out Bellota 115 kV is in
- 2) Bellota 230 kV is out Bellota 115 kV is in
- 3) Tesla is out Tracy is in
- 4) Tesla is out Salado is in
- 5) Tesla is out Salado and Manteca are in
- 6) Tesla is out Schulte is in
- 7) Tesla is out Schulte is in

The transmission facilities that establish the boundary of the Lockeford Sub-area are:

- 1) Lockeford-Industrial 60 kV line
- 2) Lockeford-Lodi #1 60 kV line

14 A single contingency means

¹⁴ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

¹⁵ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 3) Lockeford-Lodi #2 60 kV line
- 4) Lockeford-Lodi #3 60 kV line

The substations that delineate the Lockeford Sub-area are:

- 1) Lockeford is out Industrial is in
- 2) Lockeford is out Lodi is in
- 3) Lockeford is out Lodi is in
- 4) Lockeford is out Lodi is in

The transmission facilities that establish the boundary of the Weber Sub-area are:

- 1) Weber 230/60 kV Transformer #1
- 2) Weber 230/60 kV Transformer #2
- 3) Weber 230/60 kV Transformer #2a

The substations that delineate the Weber Sub-area are:

- 1) Weber 230 kV is out Weber 60 kV is in
- 2) Weber 230 kV is out Weber 60 kV is in
- 3) Weber 230 kV is out Weber 60 kV is in

Total 2013 busload within the defined area: 1090 MW with 19 MW of losses resulting in total load + losses of 1109 MW.

Total units and qualifying capacity available in this area:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNIT ID	LCR SUB- AREA NAME	NQC Comments	CAISO Tag
BEARDS_7_UNIT 1	34074	BEARDSLY	6.9	8.36	1	Tesla-Bellota	Aug NQC	MUNI
CURIS_1_QF				0.84		Tesla-Bellota	Not modeled Aug NQC	QF/Selfgen
DONNLS_7_UNIT	34058	DONNELLS	13.8	72.00	1	Tesla-Bellota	Aug NQC	MUNI
LODI25_2_UNIT 1	38120	LODI25CT	9.11	22.70	1	Lockeford		MUNI
PHOENX_1_UNIT				1.41		Tesla-Bellota	Not modeled Aug NQC	Market
SCHLTE_1_PL1X3	33805	GWFTRCY1	13.8	83.56	1	Tesla-Bellota		Market
SCHLTE_1_PL1X3	33807	GWFTRCY2	13.8	82.88	1	Tesla-Bellota		Market
SNDBAR_7_UNIT 1	34060	SANDBAR	13.8	12.02	1	Tesla-Bellota	Aug NQC	MUNI
SPIFBD_1_PL1X2	33917	FBERBORD	115	1.91	1	Tesla-Bellota	Aug NQC	QF/Selfgen
SPRGAP_1_UNIT 1	34078	SPRNG GP	6	0.04	1	Tesla-Bellota	Aug NQC	Market
STANIS_7_UNIT 1	34062	STANISLS	13.8	91.00	1	Tesla-Bellota	Aug NQC	Market
STNRES_1_UNIT	34056	STNSLSRP	13.8	15.98	1	Tesla-Bellota	Aug NQC	QF/Selfgen
STOKCG_1_UNIT 1	33814	CPC STCN	12.5	34.91	1	Tesla-Bellota	Aug NQC	QF/Selfgen
TULLCK_7_UNITS	34076	TULLOCH	6.9	8.23	1	Tesla-Bellota	Aug NQC	MUNI
TULLCK_7_UNITS	34076	TULLOCH	6.9	8.24	2	Tesla-Bellota	Aug NQC	MUNI
ULTPCH_1_UNIT 1	34050	CH.STN.	13.8	15.17	1	Tesla-Bellota	Aug NQC	QF/Selfgen
VLYHOM_7_SSJID				1.39		Tesla-Bellota	Not modeled Aug NQC	QF/Selfgen
CAMCHE_1_PL1X3	33850	CAMANCHE	4.2	3.50	1	Tesla-Bellota	No NQC - hist. data	MUNI
CAMCHE_1_PL1X3	33850	CAMANCHE	4.2	3.50	2	Tesla-Bellota	No NQC - hist. data	MUNI
CAMCHE_1_PL1X3	33850	CAMANCHE	4.2	3.50	3	Tesla-Bellota	No NQC - hist. data	MUNI

NA	33687	STKTN WW	60	1.50	1	Weber	No NQC - hist. data	QF/Selfgen
NA	33830	GEN.MILL	9.11	2.50	1	Lockeford	No NQC - hist. data	QF/Selfgen
COGNAT_1_UNIT	33818	COG.NTNL	12	0.00	1	Weber	Retired	QF/Selfgen
SCHLTE_1_PL1X3	33811	GWFTRCY3	13.8	145	1	Tesla-Bellota	No NQC - Pmax	Market

Major new projects modeled:

- 1. Weber 230/60 kV Transformer Replacement
- Weber-Stockton "A" #1 & #2 60 kV Reconductoring
- GWF Tracy Expansion Loop in Tesla-Manteca 115 kV line to Schulte switching station.
- 4. GWF Tracy (145 MW) connecting to Schulte 115 kV switching station.

Critical Contingency Analysis Summary

Stockton overall

The requirement for this area is driven by the sum of requirements for the Tesla-Bellota, Lockeford, Stagg and Weber Sub-areas.

Tesla-Bellota Sub-area

The two most critical contingencies listed below together establish a local capacity need of 518 MW (includes 70 MW of QF and 119 MW of Muni generation as well as 130 MW of deficiency) in 2013 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical contingency for the Tesla-Bellota pocket is the loss of Schulte-Kasson-Manteca 115 kV and Schulte-Lammers 115 kV. The area limitation is thermal overload of the Tesla-Tracy 115 kV line above its emergency rating. This limiting contingency establishes a local capacity need of 412 MW (includes 70 MW of QF and 119 MW of Muni generation as well as 130 MW of deficiency) in 2013.

The second most critical contingency for the Tesla-Bellota pocket is the loss of Tesla-Tracy 115 kV and Tesla-Schulte #2 115 kV lines. The area limitation is thermal overload of the Tesla-Schulte #1 115 kV line. This limiting contingency establishes a 2013 local capacity need of 388 MW (includes 70 MW of QF and 119 MW of Muni

generation).

The single most critical contingency for the Tesla-Bellota pocket is the loss of Tesla-Tracy 115 kV line and the loss of the GWF Tracy unit #3. The area limitation is thermal overload of the Tesla-Schulte #1 115 kV line. This single contingency establishes a local capacity need of 242 MW (includes 70 MW of QF and 119 MW of Muni generation) in 2013.

Effectiveness factors:

All units within this sub-area are needed for the most limiting contingencies therefore no effectiveness factor is required.

Lockeford Sub-area

The critical contingency for the Lockeford area is the loss of Lockeford-Industrial 60 kV circuit and Lockeford-Lodi #2 60 kV circuit. The area limitation is thermal overloading of the Lockeford-Lodi Jct. section of the Lockeford-Lodi #3 60 kV circuit. This limiting contingency establishes a 2013 local capacity need of 49 MW (including 2 MW of QF and 23 MW of Muni generation as well as 24 MW of deficiency) as the minimum capacity necessary for reliable load serving capability within this area.

Effectiveness factors:

All units within this sub-area are needed therefore no effectiveness factor is required.

Weber Sub-area

No requirement due to the Weber 230/60 kV transformer replacement and Weber – Stockton "A" #1 & 2 60 kV lines reconductoring projects. If these projects are delayed all units within this sub-area (Cogeneration National and Stockton Wastewater) are needed.

Changes compared to last year's results:

Overall the Stockton area load forecast went up by 23 MW. There are a few

transmission upgrade modeled and one new generation project modeled (GWF Tracy Expansion – Loop in the Tesla-Manteca 115 kV line to Schulte switching station) in the Stockton local area compared to last year studies. The Weber sub-area is eliminated because of the Weber 230/60 kV transformer upgrade and Weber – Stockton "A" #1 & 2 60 kV lines reconductoring projects. As a result, the overall requirement for the Stockton area stayed the same as last year.

Stockton Overall Requirements:

2013	QF (MW)	Muni (MW)	Market (MW)	Max. Qualifying Capacity (MW)
Available generation	74	142	404	620

2013	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ¹⁶	242	0	242
Category C (Multiple) ¹⁷	413	154	567

5. Greater Bay Area

Area Definition

The transmission tie lines into the Greater Bay Area are:

- 1) Lakeville-Sobrante 230 kV
- 2) Ignacio-Sobrante 230 kV
- 3) Parkway-Moraga 230 kV
- 4) Bahia-Moraga 230 kV
- 5) Lambie SW Sta-Vaca Dixon 230 kV
- 6) Peabody-Birds Landing SW Sta 230 kV
- 7) Tesla-Kelso 230 kV
- 8) Tesla-Delta Switching Yard 230 kV
- 9) Tesla-Pittsburg #1 230 kV
- 10) Tesla-Pittsburg #2 230 kV
- 11) Tesla-Newark #1 230 kV

¹⁶ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

¹⁷ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 12) Tesla-Newark #2 230 kV
- 13) Tesla-Ravenswood 230 kV
- 14) Tesla-Metcalf 500 kV
- 15) Moss Landing-Metcalf 500 kV
- 16) Moss Landing-Metcalf #1 230 kV
- 17) Moss Landing-Metcalf #2 230 kV
- 18) Oakdale TID-Newark #1 115 kV
- 19) Oakdale TID-Newark #2 115 kV

The substations that delineate the Greater Bay Area are:

- 1) Lakeville is out Sobrante is in
- 2) Ignacio is out Crocket and Sobrante are in
- 3) Parkway is out Moraga is in
- 4) Bahia is out Moraga is in
- 5) Lambie SW Sta is in Vaca Dixon is out
- 6) Peabody is out Birds Landing SW Sta is in
- 7) Tesla and USWP Ralph are out Kelso is in
- 8) Tesla and Altmont Midway are out Delta Switching Yard is in
- 9) Tesla and Tres Vaqueros are out Pittsburg is in
- 10) Tesla and Flowind are out Pittsburg is in
- 11) Tesla is out Newark is in
- 12) Tesla is out Newark and Patterson Pass are in
- 13) Tesla is out Ravenswood is in
- 14) Tesla is out Metcalf is in
- 15) Moss Landing is out Metcalf is in
- 16) Moss Landing is out Metcalf is in
- 17) Moss Landing is out Metcalf is in
- 18) Oakdale TID is out Newark is in
- 19) Oakdale TID is out Newark is in

Total 2013 bus load within the defined area is 9770 MW with 199 MW of losses and 264 MW of pumps resulting in total load + losses + pumps of 10233 MW. This corresponds to about 9633 MW of load per CEC forecast since there are about 600 MW of loads behind the meter modeled in the base cases.

Total units and qualifying capacity available in this area:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNIT ID	NOC Comme		CAISO Tag
ALMEGT_1_UNIT 1	38118	ALMDACT1	13.8	23.80	1	Oakland		MUNI
ALMEGT_1_UNIT 2	38119	ALMDACT2	13.8	24.40	1	Oakland		MUNI
BANKPP_2_NSPIN	38760	DELTA E	13.2	28.00	10	Contra Costa	Pumps	MUNI
BANKPP_2_NSPIN	38760	DELTA E	13.2	28.00	11	Contra Costa	Pumps	MUNI
BANKPP_2_NSPIN	38765	DELTA D	13.2	28.00	8	Contra Costa	Pumps	MUNI
BANKPP_2_NSPIN	38765	DELTA D	13.2	28.00	9	Contra Costa	Pumps	MUNI

\sim	റ
⊁.	ч
•	_

					ı			
QF/Selfgen	guA bələbom fol/	Aone		1.98				HICKS_7_GUADLP
QF/Selfgen	Aug NQC	Pittsburg	l	17.54	8.61	GMF #5	33135	GWFPW5_6_UNIT 1
QF/Selfgen	Aug NQC	Pittsburg, Contra Costa	l	16.61	8.61	CME #⊄	33134	GWFPW4_6_UNIT 1
QF/Selfgen	Aug NQC	Pittsburg, Contra Costa	l	14.53	8.E1	GMF #3	33133	FTINU_1_EW97W9
QF/Selfgen	Aug NQC	Pittsburg	l	£8.71	8.61	GMF #2	33132	GWFPW2_1_UNIT 1
QF/Selfgen	Aug NQC	Pittsburg, Contra Costa	l	15.73	11.6	GMF #1	าะเระ	TINU_8_1W9TH
QF/Selfgen	Aug NQC	AnoN	l	24.58	911	HIFFRIDE	32740	GRZZLY_1_BERKLY
Market	Aug NQC	regald	l	00.94	8.61	СКОУРК R3	32823	4XEJA_1_94AJID
Market	Aug NQC	rlagas	l	46.50	8.61	СКОҮРКЯ2	35852	GILRPP_1_PL1X2
Market	Aug NQC	rlagas	L	45.50	8.61	GROYPKR1	15858	GILRPP_1_PL1X2
Market	Aug NQC	rlagas	7	32,70	8.61	егву сов	32820	GILROY_1_UNIT
Market	Aug NQC	rpagas	l	08.69	8.61	егву сов	32820	GILROY_1_UNIT
Market	Aug NQC	Contra Costa	l	98.381	81	GATEWAY3	33120	GATWAY_2_PL1X3
Market	Aug NQC	Contra Costa	Į.	185.36	81	CATEWAY2	91188	CX119_2_YAWTAÐ
Market	Aug NQC	Contra Costa	l	72.681	81	CATEWAY1	81188	GATWAY_2_PL1X3
bniW	Not Modeled Aug NQC	Contra Costa		98.2				FLOWD2_2_UNIT 1
bniW	Aug NQC	Contra Costa	l	00.0	11.6	ATAGWOJA	81636	FLOWD1_6_ALTPP1
INUM		San Jose	ļ	92.64	8.61	DVRaST3	39898	DUANE_1_PL1X3
INUM		San Jose	ļ	72.64	8.E1	DVRbGT2	⊅ 989€	DUANE_1_PL1X3
INUM		San Jose	L	72.64	8.61	DVRaGT1	£989£	DUANE_1_PL1X3
Market	Aug NQC	Pittsburg	l	£1.181	81	DEC CTG3	33110	DELTA_2_PL1X4
Market	Aug NQC	Pittsburg	l	81,181	81	DEC CLG2	33109	DELTA_2_PL1X4
Market	Aug NQC	Pittsburg	L	E1.181	81	DEC CTG1	33108	DELTA_2_PL1X4
Market	Aug NQC	Pittsburg	l	19.692	74	DEC STG1	33107	DELTA_2_PL1X4
INUM		San Jose	7	24.00	8.61	Gia200	96898	CSCGNR_1_UNIT 2
INUM		San Jose	Į.	24.00	8.61	Gia100	36858	CSCGNR_1_UNIT 1
INUM		San Jose	7	3.00	15	Cogen	7989E	CSCCOG_1_UNIT 1
INUM		San Jose	l	3.00	15	Cogen	79898	CSCCOG_1_UNIT 1
QF/Selfgen	Aug NQC	Pittsburg	l	00.461	81	СКСКТСОБ	32900	CROKET_7_UNIT
QF/Selfgen	Aug NQC	San Jose	l	25.80	8.61	CCA100	99898	CONTAN_1_UNIT
Market	Energy Only	Contra Costa	- L	00.0	81	7 SOO.O	33117	T TINU_T_990000
Market	Energy Only	Contra Costa	Į.	00.0	81	0.COS 6	91166	6 TINU_T_9 TINU_B
QF/Selfgen	Not modeled	Oakland		00.0				CLRMTK_1_QF
QF/Selfgen	Aug NQC	əuoN	7	89.01	12.5	CARDINAL	33463	CARDCG_1_UNITS
QF/Selfgen	Aug NQC	anoM	Į.	79.01	12.5	CARDINAL	33463	CARDCG_1_UNITS
QF/Selfgen	Aug NQC	San Jose	· ·	22.43	11.6	OFS-YEVE	32860	CALPIN_1_AGNEW
bniW	Aug NQC	Contra Costa		78.55	3.4.5	SHIFOH 5	32177	BKDSLD_2_SHILO2
bniW	Aug NQC	Contra Costa		28.98	34.5	SHIFOH	32176	BRDSLD 2 SHILO1
bniW	Aug NQC	Contra Costa	·	96.6	3.4.5	HIGHMND3	17128	BRDSLD 2 MTZUMA
bniW	Aug NQC	Contra Costa	·	60.35	34.5	HICHMINDS	32172	BKDSCD 2 HIMIND
QF/Selfgen	Not modeled Aug	PuoN		90.1				BLHVN_7_MENLOP
MUNI	Pumps	Contra Costa	3	22.00	2.21	A ATJ∃Q	38820	BANKPP_2_NSPIN
INUM	Pumps	Contra Costa	7	00.6	2.21	A ATJEQ	38820	BANKPP 2 NSPIN
INUM	Pumps	Contra Costa	<u>\</u>	00.6	2.21	A ATJED	38820	BANKPP 2 NSPIN
INUM	Pumps	Contra Costa	9	28.00	2.21	DELTA B	38815	BANKPP 2 NSPIN
INUM	Pumps	Contra Costa	<u></u>	28.00	13.2	DELTA B	38815	BVNKbb 5 NSbIN
INUM	Pumps	Contra Costa		28.00	2.81	DELTA C	38770	BYNKBB 3 NEBIN
INUM	Sdmug	Contra Costa	9	28.00	13.2	DELTA C	07788	
11411144		24000 034000	Э	00 00	001	O AT IDG	UZZOU	MIGSIN C GGNINA

							NQC	
KIRKER_7_KELCYN	32951	KIRKER	115	3.21		Pittsburg	Not modeled	Market
LAWRNC_7_SUNYVL				0.16		None	Not modeled Aug NQC	Market
LECEF_1_UNITS	35854	LECEFGT1	13.8	46.50	1	San Jose	Aug NQC	Market
LECEF_1_UNITS	35855	LECEFGT2	13.8	46.50	1	San Jose	Aug NQC	Market
LECEF_1_UNITS	35856	LECEFGT3	13.8	46.50	1	San Jose	Aug NQC	Market
LECEF_1_UNITS	35857	LECEFGT4	13.8	46.50	1	San Jose	Aug NQC	Market
LFC 51_2_UNIT 1	35310	LFC FIN+	9.11	1.72	1	None	Aug NQC	Wind
LMBEPK_2_UNITA1	32173	LAMBGT1	13.8	47.00	1	Contra Costa	Aug NQC	Market
LMBEPK_2_UNITA2	32174	GOOSEHGT	13.8	46.00	2	Contra Costa	Aug NQC	Market
LMBEPK_2_UNITA3	32175	CREEDGT1	13.8	47.00	3	Contra Costa	Aug NQC	Market
LMEC_1_PL1X3	33111	LMECCT2	18	163.20	1	Pittsburg	Aug NQC	Market
LMEC_1_PL1X3	33112	LMECCT1	18	163.20	1	Pittsburg	Aug NQC	Market
LMEC_1_PL1X3	33113	LMECST1	18	229.60	1	Pittsburg	Aug NQC	Market
MARKHM_1_CATLST	35863	CATALYST	9.11	0.00	1	San Jose		QF/Selfgen
MARTIN_1_SUNSET				0.80		None	Not modeled Aug NQC	QF/Selfgen
METCLF_1_QF				0.08		None	Not modeled Aug NQC	QF/Selfgen
METEC_2_PL1X3	35881	MEC CTG1	18	178.43	1	None	Aug NQC	Market
METEC_2_PL1X3	35882	MEC CTG2	18	178.43	1	None	Aug NQC	Market
METEC_2_PL1X3	35883	MEC STG1	18	213.14	1	None	Aug NQC	Market
MILBRA_1_QF				0.00		None	Not modeled	QF/Selfgen
MISSIX_1_QF				0.24		None	Not modeled Aug NQC	QF/Selfgen
MLPTAS_7_QFUNTS				0.02		San Jose	Not modeled Aug NQC	QF/Selfgen
MNTAGU_7_NEWBYI				2.87		None	Not modeled Aug NQC	QF/Selfgen
NEWARK_1_QF				0.03		None	Not modeled Aug NQC	QF/Selfgen
OAK C_7_UNIT 1	32901	OAKLND 1	13.8	55.00	1	Oakland		Market
OAK C_7_UNIT 2	32902	OAKLND 2	13.8	55.00	1	Oakland		Market
OAK C_7_UNIT 3	32903	OAKLND 3	13.8	55.00	1	Oakland		Market
OAK L_7_EBMUD				0.56		Oakland	Not modeled Aug NQC	MUNI
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.45	1	None		Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.45	2	None		Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.45	3	None		Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.45	4	None		Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.45	5	None		Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.45	6	None		Market
OXMTN_6_LNDFIL	33469	OX_MTN	4.16	1.45	7	None		Market
PALALT_7_COBUG				4.50		None	Not modeled	MUNI
PITTSP_7_UNIT 5	33105	PTSB 5	18	312.00	1	Pittsburg		Market
PITTSP_7_UNIT 6	33106	PTSB 6	18	317.00	1	Pittsburg		Market
PITTSP_7_UNIT 7	30000	PTSB 7	20	682.00	1	Pittsburg		Market
RICHMN_7_BAYENV				2.00		None	Not modeled Aug NQC	QF/Selfgen
RVRVEW_1_UNITA1	33178	RVEC_GEN	13.8	46.00	1	Contra Costa	Aug NQC	Market
SEAWST_6_LAPOS	35312	SEAWESTF	9.11	0.35	1	Contra Costa	Aug NQC	Wind
SRINTL_6_UNIT	33468	SRI INTL	9.11	0.76	1	None	Aug NQC	QF/Selfgen
STAUFF_1_UNIT	33139	STAUFER	9.11	0.01	1	None	Aug NQC	QF/Selfgen

STOILS_1_UNITS 32921 CHEVGEN1 13.8 1.41 1 Pittsburg Aug N	NQC QF/Selfgen
STOILS 1 UNITS 32922 CHEVGEN2 13.8 1.41 1 Pittsburg Aug N	
TIDWTR_2_UNITS 33151 FOSTER W 12.5 5.93 1 Pittsburg Aug N	
TIDWTR_2_UNITS 33151 FOSTER W 12.5 5.93 2 Pittsburg Aug N	NQC QF/Selfgen
TIDWTR_2_UNITS 33151 FOSTER W 12.5 5.93 3 Pittsburg Aug N	NQC QF/Selfgen
UNCHEM_1_UNIT	NQC QF/Selfgen
UNOCAL_1_UNITS 32910 UNOCAL 12 0.03 1 Pittsburg Aug N	NQC QF/Selfgen
UNOCAL_1_UNITS 32910 UNOCAL 12 0.03 2 Pittsburg Aug N	NQC QF/Selfgen
UNOCAL_1_UNITS 32910 UNOCAL 12 0.03 3 Pittsburg Aug N	NQC QF/Selfgen
UNTDQF_7_UNITS	NQC QF/Selfgen
USWNDR_2_SMUD 32169 SOLANOWP 21 17.82 1 Contra Costa Aug N	NQC Wind
USWNDR_2_UNITS 32168 EXNCO 9.11 26.27 1 Contra Costa Aug N	NQC Wind
USWPFK_6_FRICK 35320 USW FRIC 12 0.47 1 Contra Costa Aug N	NQC Wind
USWPFK_6_FRICK 35320 USW FRIC 12 0.47 2 Contra Costa Aug N	VQC Wind
USWPJR_2_UNITS	NQC Wind
WNDMAS_2_UNIT 1 33170 WINDMSTR 9.11 3.30 1 Contra Costa Aug N	NQC Wind
ZOND_6_UNIT	NQC Wind
IBMCTL_1_UNIT 1 35637 IBM-CTLE 115 0.00 1 San Jose No NQC dat	ta Warket
IMHOFF_1_UNIT 1 33136 CCCSD 12.5 4.40 1 Pittsburg No NQC dat	ta QF/Seitgen
SHELRF_1_UNITS 33141 SHELL 1 12.5 20.00 1 Pittsburg No NQC dat	ta QF/Seifgen
SHELRF_1_UNITS 33142 SHELL 2 12.5 40.00 1 Pittsburg No NQC dat	ta QF/Seilgen
SHELRF_1_UNITS 33143 SHELL 3 12.5 40.00 1 Pittsburg No NQC dat	II IE/Seiinen
ZANKER_1_UNIT 1 35861 SJ-SCL W 9.11 5.00 1 San Jose No NQC dat	IUE/Seimen
BRDSLD_2_MTZUM2 32179 MNTZUMA2 0.69 26 1 Contra Costa No NQC dat	I VVIII(1
BRDSLD_2_SHLO3A 32191 SHLH3AC2 0.58 30 1 Contra Costa No NQC dat	I VVIETE
BRDSLD_2_SHLO3B 32194 SHLH3BC2 0.58 30 1 Contra Costa No NQC dat	
KELSO_2_GTG6 33813 KELSOCT1 13.8 50 1 Contra Costa No NQC	- Pmax Market
KELSO_2_GTG7 33815 KELSOCT2 13.8 50 2 Contra Costa No NQC	- Pmax Market
KELSO_3_GTG8 33817 KELSOCT3 13.8 50 3 Contra Costa No NQC	- Pmax Market
KELSO_3_GTG9 33819 KELSOCT4 13.8 50 4 Contra Costa No NQC	
New Unit 32186 SOLANO 34.5 42 1 Contra Costa No NQC dat	I VVICICI
New Unit 33188 T320BS1 16.4 193.5 1 Contra Costa No NQC	- Pmax Market
New Unit 33188 T320BS1 16.4 193.5 2 Contra Costa No NQC	- Pmax Market
Nov. Hait 22400 T220DC2 4C4 400 F 2 Contra Court No. NO.	- Pmax Market
New Unit 33189 T320BS2 16.4 193.5 3 Contra Costa No NQC	
New Unit 33189 1320BS2 16.4 193.5 3 Contra Costa No NQC New Unit 33189 T320BS2 16.4 193.5 4 Contra Costa No NQC	- Pmax Market
New Unit 33189 T320BS2 16.4 193.5 4 Contra Costa No NQC	- Pmax Market
New Unit 33189 T320BS2 16.4 193.5 4 Contra Costa No NQC New Unit 35304 Q045CTG1 15 177.50 1 None No NQC	- Pmax Market - Pmax Market

Major new projects modeled:

1. Replace Moraga 230/115kV Bank #1 with larger unit - 12/30/2012

- 2. Eastshore San Mateo 230 kV Line Reconductor 12/01/2011
- 3. Eastshore Dumbarton 115 kV Line Reconductor 06/01/2012
- 4. Four Wind farms connected to Birds Landing (~ 340 MW P max)
- 5. Russell City Energy Center (~ 600 MW P max) 06/01/2013
- 6. Marsh Landing Generating Station (~ 774 MW P max) 12/01/2012
- 7. Los Esteros Critical Energy Facility (LECEF) capacity increase by 120 MW (total 295 MW) 05/01/2013

Critical Contingency Analysis Summary

Oakland Sub-area

The most critical contingency is an outage of the C-X #2 and #3 115 kV cables. The area limitation is thermal overloading of the D-L 115 kV lines. This limiting contingency establishes a LCR of 68 MW in 2012 (includes 49 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

This Oakland requirement does not include the need for Pittsburg/Oakland sub-area.

Effectiveness factors:

All units within this area have the same effectiveness factor. Units outside of this area are not effective.

Llagas Sub-area

The most critical contingency is an outage between Metcalf D and Morgan Hill 115 kV (with one of the Gilroy Peaker off-line). The area limitation is thermal overloading of the Metcalf-Llagas 115 kV line as well as voltage drop (5%) at the Morgan Hill substation. As documented within a CAISO Operating Procedure, this limitation is dependent on power flowing in the direction from Metcalf to Llagas/Morgan Hill. This limiting contingency establishes a LCR of 100 MW in 2013 (includes 0 MW of QF and Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this area have the same effectiveness factor. Units outside of this area are not effective.

San Jose Sub-area

The most critical contingency is an outage of Metcalf-El Patio #1 or #2 115 kV line followed by Metcalf-Evergreen #1 115 kV line. The area limitation is thermal overloading of the Evergreen – San Jose B 115 kV line. This limiting contingency establishes a LCR of 565 MW in 2013 (includes 53 MW of QF and 202 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is an outage of the Metcalf-Evergreen #1 115 kV line with Duane PP out of service. The sub-area area limitation is thermal overloading of the Northern Receiving Station (NRS) - Southern Receiving Station (SRS) 115 kV. This limiting contingency establishes a LCR of 354 MW in 2013 (including 53 MW of QF and 202 MW of Muni generation).

Effectiveness factors:

The following table has units within the Bay Area that are at least 5% effective to the above-mentioned most critical constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
35863	CATALYST	1	20
36856	CCCA100	1	6
36854	Cogen	1	6
36854	Cogen	2	6
36863	DVRaGT1	1	6
36864	DVRbGT2	1	6
36865	DVRaST3	1	6
35860	OLS-AGNE	1	5
36858	Gia100	1	5
36859	Gia200	2	5
35854	LECEFGT1	1	5
35855	LECEFGT2	2	5
35856	LECEFGT3	3	5
35857	LECEFGT4	4	5

Pittsburg and Oakland Sub-area Combined

The most critical contingency is an outage of the Moraga #3 230/115 kV transformer combined with the loss of Delta Energy Center. The sub-area area limitation is thermal overloading of Moraga #1 230/115 kV transformer. This limiting contingency establishes a LCR of 2379 MW in 2013 (including 417 MW of QF and 49 MW of Muni generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is an outage of the Moraga #3 230/115 kV transformer. The sub-area area limitation is thermal overloading of the Moraga #1 230/115 kV transformer. This limiting contingency establishes a LCR of 1966 MW in 2013 (including 417 MW of QF and 49 MW of Muni generation).

Effectiveness factors:

Please see Bay Area overall.

Contra Costa Sub-area

The most critical contingency is an outage of Kelso-Tesla 230 kV with the Gateway off line. The area limitation is thermal overloading of the Delta Switching Yard-Tesla 230 kV line. This limiting contingency establishes a LCR of 1052 MW in 2013 (includes 47 MW of QF and 298 MW of Wind generation and 264 MW of MUNI pumps) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units within the Bay Area that are at least 10% effective to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
33175	ALTAMONT	1	83
38760	DELTA E	10	71
38760	DELTA E	11	71
38765	DELTA D	8	71
38765	DELTA D	9	71
38770	DELTA C	6	71

38770	DELTA C	7	71
38815	DELTA B	4	71
38815	DELTA B	5	71
38820	DELTA A	3	71
33170	WINDMSTR	1	68
33118	GATEWAY1	1	23
33119	GATEWAY2	1	23
33120	GATEWAY3	1	23
33116	C.COS 6	1	23
33117	C.COS 7	1	23
33133	GWF #3	1	23
33134	GWF #4	1	23
33178	RVEC_GEN	1	23
33131	GWF #1	1	22
32179	T222	1	18
32188	P0611G	1	18
32190	Q039	1	18
32186	P0609	1	18
32171	HIGHWND3	1	18
32177	Q0024	1	18
32168	ENXCO	2	18
32169	SOLANOWP	1	18
32172	HIGHWNDS	1	18
32176	SHILOH	1	18
33838	USWP_#3	1	18
32173	LAMBGT1	1	14
32174	GOOSEHGT	2	14
32175	CREEDGT1	3	14
35312	SEAWESTF	1	11
35316	ZOND SYS	1	11
35320	USW FRIC	1	11

Bay Area overall

As the aggregate sub pocket LCR is not adequate to cover the overall Bay area contingency,

The most critical contingency is an overlapping outage of the Tesla-Metcalf 500 kV line and Tesla-Newark #1 230 kV line. The sub-area area limitation is thermal overload on the Tesla-Ravenswood 230 kV line. This limiting contingency establishes a LCR of 4502 MW in 2013 (including 549 MW of QF, 519 MW of MUNI and 300 MW of wind generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is an outage of the Tesla-Metcalf 500 kV line with Delta Energy Center out of service. The sub-area area limitation is reactive margin within the Bay Area. This limiting contingency establishes a LCR of 3479 MW in 2013 (including 549 MW of QF, 519 MW of MUNI and 300 MW of wind generation).

Effectiveness factors:

For most helpful procurement information please read procedure T-133Z effectiveness factors (posted under M-2210Z) at: http://www.caiso.com/Documents/2210Z.pdf

Changes compared to last year's results:

Overall the load forecast went up by 279 MW. There are many new resources and transmission projects modeled compared with last year study. As an overall result, LCR has increased by 224 MW.

Bay Area Overall Requirements:

2013	Wind	QF/Selfgen	Muni	Market	Max. Qualifying
	(MW)	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	300	549	519	6296	7664

2013	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ¹⁸	3479	0	3479
Category C (Multiple) ¹⁹	4502	0	4502

1

¹⁸ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

¹⁹ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

6. Greater Fresno Area

Area Definition

The transmission facilities coming into the Greater Fresno area are:

- 1) Gates-Gregg 230 kV Line
- 2) Gates-McCall 230 kV Line
- 3) Gates #1 230/70 kV Transformer Bank
- 4) Los Banos #3 230/70 kV Transformer Bank
- 5) Los Banos #4 230/70 kV Transformer Bank
- 6) Panoche-Helm 230 kV Line
- 7) Panoche-Kearney 230 kV Line
- 8) Panoche #1 230/115 kV Transformer
- 9) Panoche #2 230/115 kV Transformer
- 10) Warnerville-Wilson 230 kV Line
- 11) Wilson-Melones 230 kV Line
- 12) Smyrna-Corcoran 115kV Line
- 13) Coalinga #1-San Miguel 70 kV Line

The substations that delineate the Greater Fresno area are:

- 1) Gates is out Henrietta is in
- 2) Gates is out Henrietta is in
- 3) Gates 230 kV is out Gates 70 kV is in
- 4) Los Banos 230 kV is out Los Banos 70 kV is in
- 5) Los Banos 230 kV is out Los Banos 70 kV is in
- 6) Panoche is out Helm is in
- 7) Panoche is out Mc Mullin is in
- 8) Panoche 115 kV is in Panoche 230 kV is out
- 9) Panoche 115 kV is in Panoche 230 kV is out
- 10) Warnerville is out Wilson is in
- 11) Wilson is in Melones is out
- 12) Quebec SP is out Corcoran is in
- 13) Coalinga is in San Miguel is out

2013 total busload within the defined area is 3032 MW with 81 MW of losses resulting in a total (load plus losses) of 3032 MW.

Total units and qualifying capacity available in this area:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNIT ID	LCR SUB-AREA NAME	NQC Comments	CAISO Tag
AGRICO_6_PL3N5	34608	AGRICO	13.8	20.00	3	Wilson, Herndon		Market
AGRICO_7_UNIT	34608	AGRICO	13.8	43.05	2	Wilson, Herndon		Market
AGRICO_7_UNIT	34608	AGRICO	13.8	7.45	4	Wilson, Herndon		Market
BALCHS_7_UNIT 1	34624	BALCH	13.2	33.00	1	Wilson, Herndon	Aug NQC	Market

BALCHS_7_UNIT 2	34612	BLCH	13.8	52.50	1	Wilson, Herndon	Aug NQC	Market
BALCHS 7 UNIT 3	34614	BLCH	13.8	52.50	1	Wilson, Herndon	Aug NQC	Market
BORDEN 2 QF	34253	BORDEN D	12.5	0.98	QF	Wilson	Aug NQC	QF/Selfgen
BULLRD_7_SAGNES	34213	BULLD 12	12.5	0.00	1	Wilson	Aug NQC	QF/Selfgen
CAPMAD_1_UNIT 1	34179	MADERA_G	13.8	17.00	1	Wilson		Market
CHEVCO_6_UNIT 1	34652	CHV.COAL	9.11	6.69	1	Wilson	Aug NQC	QF/Selfgen
CHEVCO_6_UNIT 2	34652	CHV.COAL	9.11	1.40	2	Wilson	Aug NQC	QF/Selfgen
CHWCHL_1_BIOMAS	34305	CHWCHLA2	13.8	3.84	1	Wilson, Herndon	Aug NQC	Market
CHWCHL 1 UNIT	34301	CHOWCOGN	13.8	48.00	1	Wilson, Herndon	_	Market
COLGA1_6_SHELLW	34654	COLNGAGN	9.11	35.61	1	Wilson	Aug NQC	QF/Selfgen
CRESSY_1_PARKER	34140	CRESSEY	115	1.24		Wilson	Not modeled Aug NQC	MUNI
CRNEVL_6_CRNVA	34634	CRANEVLY	12	0.71	1	Wilson	Aug NQC	Market
CRNEVL_6_SJQN 2	34631	SJ2GEN	9.11	3.20	1	Wilson	Aug NQC	Market
CRNEVL_6_SJQN 3	34633	SJ3GEN	9.11	4.20	1	Wilson	Aug NQC	Market
DINUBA 6 UNIT	34648	DINUBA E	13.8	9.87	1	Wilson, Herndon		Market
ELNIDP 6 BIOMAS	34330	ELNIDO	13.8	3.16	1	Wilson	Aug NQC	Market
EXCHEC 7 UNIT 1	34306	EXCHQUER	13.8	61.77	1	Wilson	Aug NQC	MUNI
FRIANT 6 UNITS	34636	FRIANTDM	6.6	8.71	2	Wilson	Aug NQC	QF/Selfgen
FRIANT 6 UNITS	34636	FRIANTDM	6.6	4.65	3	Wilson	Aug NQC	QF/Selfgen
FRIANT_6_UNITS	34636	FRIANTDM	6.6	1.23	4	Wilson	Aug NQC	QF/Selfgen
GATES_6_PL1X2	34553	WHD_GAT2	13.8	46.00	1	Wilson	NQC List has 0 MW	Market
GWFPWR_1_UNITS	34431	GWF HEP1	13.8	42.20	1	Wilson, Herndon		Market
GWFPWR 1 UNITS	34433	GWF HEP2	13.8	42.20	1	Wilson, Herndon		Market
HAASPH 7 PL1X2	34610	HAAS	13.8	68.15	1	Wilson, Herndon	Aug NQC	Market
HAASPH 7 PL1X2	34610	HAAS	13.8	68.15	2	Wilson, Herndon	Aug NQC	Market
HELMPG 7 UNIT 1	34600	HELMS	18	404.00	1	Wilson	Aug NQC	Market
HELMPG 7 UNIT 2	34602	HELMS	18	404.00	2	Wilson	Aug NQC	Market
HELMPG 7 UNIT 3	34604	HELMS	18	404.00	3	Wilson	Aug NQC	Market
HENRTA 6 UNITA1	34539	GWF GT1	13.8	45.33	1	Wilson, Henrietta	7 tag rtage	Market
HENRTA 6 UNITA2	34541	GWF GT2	13.8	45.23	1	Wilson, Henrietta		Market
INTTRB 6 UNIT	34342	INT.TURB	9.11	2.50	1	Wilson	Aug NQC	QF/Selfgen
JRWOOD 1 UNIT 1	34332	JRWCOGEN	9.11	1.70	1	Wilson	Aug NQC	QF/Selfgen
KERKH1 7 UNIT 1	34344	KERCKHOF	6.6	13.00	1	Wilson, Herndon	Aug NQC	Market
KERKH1 7 UNIT 2	34344	KERCKHOF	6.6	8.50	2	Wilson, Herndon	Aug NQC	Market
KERKH1_7_UNIT 3		KERCKHOF	6.6	12.80	3	Wilson, Herndon	Aug NQC	Market
KERKH2 7 UNIT 1	34308	KERCKHOF	13.8	153.90	1	Wilson, Herndon	Aug NQC	Market
KINGCO_1_KINGBR	34642	KINGSBUR	9.11	22.97	1	Wilson, Herndon	Aug NQC	QF/Selfgen
KINGRV_7_UNIT 1	34616	KINGSRIV	13.8	51.20	1	Wilson, Herndon	Aug NQC	Market
MALAGA_1_PL1X2	34671	KRCDPCT1	13.8	48.00	1	Wilson, Herndon		Market
MALAGA 1 PL1X2	34672	KRCDPCT2	13.8	48.00	1	Wilson, Herndon		Market
MCCALL_1_QF	34219	MCCALL 4	12.5	0.64	QF	Wilson, Herndon	Aug NQC	QF/Selfgen
MCSWAN_6_UNITS	34320	MCSWAIN	9.11	5.22	1	Wilson	Aug NQC	MUNI
MENBIO 6 UNIT	34334	BIO PWR	9.11	20.67	1	Wilson	Aug NQC	QF/Selfgen
MERCFL_6_UNIT	34322	MERCEDFL	9.11	2.30	1	Wilson	Aug NQC	Market
PINFLT_7_UNITS	38720	PINEFLAT	13.8	27.50	1	Wilson, Herndon	Aug NQC	MUNI
PINFLT 7 UNITS	38720	PINEFLAT	13.8	27.50	2	Wilson, Herndon	Aug NQC	MUNI
PINFLT_7_UNITS	38720	PINEFLAT	13.8	27.50	3	Wilson, Herndon	Aug NQC	MUNI
PNCHPP_1_PL1X2	34328	STARGT1	13.8	55.58	1	Wilson	Aug NQC	Market
PNCHPP_1_PL1X2	34329	STARGT1	13.8	200700000000000000000000000000000000000	1	Wilson		Market
				55.58 45.00				+
PNOCHE_1_PL1X2	34142	WHD_PAN2	13.8	45.00	1	Wilson, Herndon		Market

PNOCHE_1_UNITA1	34186	DG_PAN1	13.8	42.78	1	Wilson		Market
SGREGY_6_SANGER	34646	SANGERCO	9.11	26.47	1	Wilson	Aug NQC	QF/Selfgen
STOREY_7_MDRCHW	34209	STOREY D	12.5	1.18	1	Wilson	Aug NQC	QF/Selfgen
ULTPFR_1_UNIT 1	34640	ULTR.PWR	9.11	18.31	1	Wilson, Herndon	Aug NQC	QF/Selfgen
WISHON_6_UNITS	34658	WISHON	2.3	4.51	1	Wilson	Aug NQC	Market
WISHON_6_UNITS	34658	WISHON	2.3	4.51	2	Wilson	Aug NQC	Market
WISHON_6_UNITS	34658	WISHON	2.3	4.51	3	Wilson	Aug NQC	Market
WISHON_6_UNITS	34658	WISHON	2.3	4.51	4	Wilson	Aug NQC	Market
WISHON_6_UNITS	34658	WISHON	2.3	0.36	5	Wilson	Aug NQC	Market
WRGHTP_7_AMENGY	24207	WRIGHT D	12.5	0.52	QF	Wilson	Aug NQC	QF/Selfgen
NA	34257	SANCTY D	12	0.00	1	Wilson	No NQC - hist. data	QF/Selfgen
NA	34263	SANDDRAG	12	0.00	1	Wilson	No NQC - hist. data	QF/Selfgen
NA	34265	AVENAL P	12	0.00	1	Wilson	No NQC - hist. data	QF/Selfgen
NA	34485	FRESNOWW	12.5	4.00	1	Wilson	No NQC - hist. data	QF/Selfgen
NA	34485	FRESNOWW	12.5	4.00	2	Wilson	No NQC - hist. data	QF/Selfgen
NA	34485	FRESNOWW	12.5	1.00	3	Wilson	No NQC - hist. data	QF/Selfgen
ONLLPP_6_UNIT 1	34316	ONEILPMP	9.11	0.50	1	Wilson	No NQC - hist. data	MUNI
GWFPWR_6_UNIT	34650	GWF-PWR.	9.11	0.00	1	Wilson, Henrietta	Retired	QF/Selfgen
MENBIO_6_RENEW1	34339	CALRENEW	12.5	0.00	1	Wilson	Energy Only	Market
New Unit	34603	JQBSWLT	12.5	0.00	ST	Wilson	Energy Only	Market
New Unit	34673	Q372	0.48	20.00	1	Wilson, Henrietta	No NQC - Pmax	Market
New Unit	34674	Q470	0.48	20.00	1	Wilson, Henrietta	No NQC - Pmax	Market
New Unit	34675	Q471	0.48	20.00	1	Wilson, Henrietta	No NQC - Pmax	Market
New Unit	34696	Q478	21	20.00	1	Wilson, Herndon	No NQC - Pmax	Market

Major new projects modeled:

1. A few new small resources we added.

Critical Contingency Analysis Summary

Wilson Sub-area

The Wilson sub-area largely defines the Fresno area import constraints. The main constrained spot is located at Warnerville-Wilson-Gregg 230 kV transmission corridor. Other constrained spots are located at the Gates-McCall, Gates-Gregg, Panoche-McCall and Panoche-Gregg 230 kV transmission corridors.

The most critical contingency is the loss of the Melones - Wilson 230 kV line overlapped

with one of the Helms units out of service. This contingency would thermally overload the Warnerville - Wilson 230 kV line (most stringent) and possibly also the Gates-McCall 230 kV line. This limiting contingency establishes a LCR of 1786 MW in 2013 (includes 163 MW of QF and 151 MW of Muni generation) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units within Fresno that are at least 5% effective to the constraint on the Warnerville – Wilson 230 kV line.

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
34332	JRWCOGEN	1	40%
34330	ELNIDO	1	37%
34209	STOREY D	1	35%
34322	MERCEDFL	1	35%
34320	MCSWAIN	1	34%
34306	EXCHQUER	1	34%
34305	CHWCHLA2	1	32%
34301	CHOWCOGN	1	32%
34253	BORDEN D	1	28%
34658	WISHON	1	28%
34658	WISHON	1	28%
34658	WISHON	1	28%
34658	WISHON	1	28%
34658	WISHON	1	28%
34631	SJ2GEN	1	28%
34633	SJ3GEN	1	27%
34636	FRIANTDM	2	27%
34636	FRIANTDM	3	27%
34636	FRIANTDM	4	27%
34600	HELMS 1	1	27%
34602	HELMS 2	1	27%
34604	HELMS 3	1	27%
34308	KERCKHOF	1	26%
34344	KERCKHOF	1	26%
34344	KERCKHOF	2	26%
34344	KERCKHOF	3	26%
34485	FRESNOWW	1	24%
34648	DINUBA E	1	22%
34179	MADERA_G	1	22%
34616	KINGSRIV	1	22%
34624	BALCH 1	1	21%
34671	KRCDPCT1	1	21%
34672	KRCDPCT2	1	21%
34640	ULTR.PWR	1	21%
34646	SANGERCO	1	21%
34642	KINGSBUR	1	19%

Q478	1	18%
HAAS	1	18%
HAAS	1	18%
BLCH 2-3	1	18%
BLCH 2-2	1	17%
PINE FLT	1	17%
PINE FLT	2	17%
PINE FLT	3	17%
GWF_HEP1	1	17%
GWF_HEP2	1	17%
BIO PWR	1	14%
Q372	1	13%
Q470	1	13%
Q471	1	13%
AGRICO	2	13%
AGRICO	3	13%
AGRICO	4	13%
GWF_GT1	1	13%
GWF_GT2	1	13%
GWF-PWR.	1	13%
DG_PAN1	1	11%
WHD_PAN2	1	11%
CHV.COAL	1	10%
CHV.COAL	2	10%
WHD_GAT2	1	9%
COLNGAGN	1	9%
INT.TURB	1	6%
ONEILPMP	1	6%
	HAAS HAAS BLCH 2-3 BLCH 2-2 PINE FLT PINE FLT PINE FLT GWF_HEP1 GWF_HEP2 BIO PWR Q372 Q470 Q471 AGRICO AGRICO AGRICO AGRICO GWF_GT1 GWF_GT2 GWF-PWR. DG_PAN1 WHD_PAN2 CHV.COAL CHV.COAL WHD_GAT2 COLNGAGN INT.TURB	HAAS 1 HAAS 1 BLCH 2-3 1 BLCH 2-2 1 PINE FLT 1 PINE FLT 2 PINE FLT 3 GWF_HEP1 1 GWF_HEP2 1 BIO PWR 1 Q372 1 Q470 1 Q471 1 AGRICO 2 AGRICO 3 AGRICO 4 GWF_GT1 1 GWF_GT2 1 GWF_PWR. 1 DG_PAN1 1 WHD_PAN2 1 CHV.COAL 1 CHV.COAL 2 WHD_GAT2 1 COLNGAGN 1 INT.TURB 1

Herndon Sub-area

The most critical contingency is the loss of the Helm -McCall 230 kV line along with Gates-McCall 230 kV line. This contingency could thermally overload the Herndon–Manchester 115 kV line. This limiting contingency establishes a LCR of 372 MW (includes 42 MW of QF and 83 MW of Muni generation) in 2013 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units within Fresno area that are relatively effective to the above-mentioned constraint.

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
34648	DINUBA E	1	32%
34616	KINGSRIV	1	31%
34671	KRCDPCT1	1	31%
34672	KRCDPCT2	1	31%
34624	BALCH 1	1	31%

34640	ULTR.PWR	1	30%
34646	SANGERCO	1	30%
34618	MCCALL1T	1	30%
34610	HAAS	1	30%
34614	BLCH 2-3	1	30%
34612	BLCH 2-2	1	29%
38720	PINE FLT	3	29%
38720	PINE FLT	2	29%
38720	PINE FLT	1	29%
34696	Q478	1	29%
34642	KINGSBUR	1	28%
34344	KERCKHOF	3	20%
34344	KERCKHOF	2	20%
34344	KERCKHOF	1	20%
34308	KERCKHOF	1	19%
34433	GWF_HEP2	1	15%
34431	GWF_HEP1	1	15%

Henrietta Sub-area

Henrietta 230/70 bank # 2 which was identified as the limiting element in the previous LCR analysis has been taken out of service and is available as spare for the outage of the 230/70 bank # 4. This eliminates the LCR requirement for the Henrietta area.

Changes compared to last year's results:

From 2012 the load forecast has decreased by 88 MW and the LCR needs by 121 MW.

Fresno Area Overall Requirements:

2013 QF/Selfg (MW)		Muni	Market	Max. Qualifying
		(MW)	(MW)	Capacity (MW)
Available generation	163	151	2503	2817

2013	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ²⁰	1786	0	1786
Category C (Multiple) ²¹	1786	0	1786

20

²⁰ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

operations standards.

21 Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

7. Kern Area

Area Definition

The transmission facilities coming into the Kern PP sub-area are:

- 1) Wheeler Ridge-Lamont 115 kV line
- 2) Kern PP 230/115 kV Bank # 3
- 3) Kern PP 230/115 kV Bank # 4
- 4) Kern PP 230/115 kV Bank # 5
- 5) Midway 230/115 Bank # 1
- 6) Midway 230/115 Bank # 2
- 7) Midway 230/115 Bank #3
- 8) Temblor San Luis Obispo 115 kV line

The substations that delineate the Kern-PP sub-area are:

- 1) Wheeler Ridge is out Lamont is in
- 2) Kern PP 230 kV is out Kern PP 115 kV is in
- 3) Kern PP 230 kV is out Kern PP 115 kV is in
- 4) Kern PP 230 kV is out Kern PP 115 kV is in
- 5) Midway 230 kV is out Midway 115 kV is in
- 6) Midway 230 kV is out Midway 115 kV is in
- 7) Midway 230 kV is out Midway 115 kV is in
- 8) Temblor is in San Luis Obispo is out

2013 total busload within the defined area: 1295 MW with 16 MW of losses resulting in a total (load plus losses) of 1311 MW.

Total units and qualifying capacity available in this Kern area:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNIT ID	LCR SUB-AREA NAME	NQC Comments	CAISO Tag
BDGRCK_1_UNITS	35029	BADGERCK	9.11	43.40	1	Kern PP	Aug NQC	QF/Selfgen
BEARMT_1_UNIT	35066	PSE-BEAR	9.11	45.90	1	Kern PP, West Park	Aug NQC	QF/Selfgen
CHALK_1_UNIT	35038	CHLKCLF+	9.11	44.76	1	Kern PP	Aug NQC	QF/Selfgen
CHEVCD_6_UNIT	35052	CHEV.USA	9.11	2.16	1	Kern PP	Aug NQC	QF/Selfgen
CHEVCY_1_UNIT	35032	CHV-CYMR	9.11	5.04	1	Kern PP	Aug NQC	QF/Selfgen
DEXZEL_1_UNIT	35024	DEXEL+	9.11	28.45	1	Kern PP	Aug NQC	QF/Selfgen
DISCOV_1_CHEVRN	35062	DISCOVRY	9.11	2.44	1	Kern PP	Aug NQC	QF/Selfgen
DOUBLC_1_UNITS	35023	DOUBLE C	9.11	37.50	1	Kern PP	Aug NQC	QF/Selfgen
FELLOW_7_QFUNTS	34778	FELLOWS	21	1.34	QF	Kern PP	Aug NQC	QF/Selfgen
FRITO_1_LAY	35048	FRITOLAY	9.11	0.09	1	Kern PP	Aug NQC	QF/Selfgen
KERNFT_1_UNITS	35026	KERNFRNT	9.11	37.70	1	Kern PP	Aug NQC	QF/Selfgen
KERNRG_1_UNITS	35040	KERNRDGE	9.11	0.54	1	Kern PP	Aug NQC	QF/Selfgen
KERNRG_1_UNITS	35040	KERNRDGE	9.11	0.54	2	Kern PP	Aug NQC	QF/Selfgen
LIVOAK_1_UNIT 1	35058	PSE-LVOK	9.11	44.27	1	Kern PP	Aug NQC	QF/Selfgen
MIDSET_1_UNIT 1	35044	TX MIDST	9.11	32.82	1	Kern PP	Aug NQC	QF/Selfgen
MIDWAY_1_QF	34215	MIDWY D7	12.5	0.03	QF	Kern PP	Aug NQC	QF/Selfgen
MKTRCK_1_UNIT 1	35060	PSEMCKIT	9.11	40.01	1	Kern PP	Aug NQC	QF/Selfgen

MTNPOS_1_UNIT	35036	MT POSO	9.11	34.60	1	Kern PP	Aug NQC	QF/Selfgen
OILDAL_1_UNIT 1	35028	OILDALE	9.11	38.96	1	Kern PP	Aug NQC	QF/Selfgen
SIERRA_1_UNITS	35027	HISIERRA	9.11	43.26	1	Kern PP	Aug NQC	QF/Selfgen
TANHIL_6_SOLART	35050	SLR-TANN	9.11	10.18	1	Kern PP	Aug NQC	QF/Selfgen
TEMBLR_7_WELLPT	34201	TEMBLORD	12.5	0.26	WP	Kern PP	Aug NQC	QF/Selfgen
TXMCKT_6_UNIT				4.04		Kern PP	Not modeled Aug NQC	QF/Selfgen
ULTOGL_1_POSO	35035	ULTR PWR	9.11	34.73	1	Kern PP	Aug NQC	QF/Selfgen
UNVRSY_1_UNIT 1	35037	UNIVRSTY	9.11	32.23	1	Kern PP	Aug NQC	QF/Selfgen
VEDDER_1_SEKERN	35046	SEKR	9.11	6.10	1	Kern PP	Aug NQC	QF/Selfgen
MIDSUN_1_PL1X2	35034	MIDSUN +	9.11	0.00	1	Kern PP	Retired	Market
NA	34783	TEXCO_NM	9.11	0.00	1	Kern PP	No NQC - hist. data	QF/Selfgen
NA	34783	TEXCO_NM	9.11	3.40	2	Kern PP	No NQC - hist. data	QF/Selfgen
NA	35056	TX-LOSTH	4.16	8.80	1	Kern PP	No NQC - hist. data	QF/Selfgen
New Unit	35000	Q340	21	0.00	1	Kern PP	Energy Only	Market

Major new projects modeled:

1. Transfer Navy 35 load and self-gen to the Midway-Elk Hills 230 kV lines.

Critical Contingency Analysis Summary

Kern PP Sub-area

The most critical contingency is the outage of the Kern PP #5 or #3 230/115 kV transformer followed by the Kern PP – Double C Junction 115 kV line, which could thermally overload the parallel Kern PP #4 230/115 kV transformer. This limiting contingency establishes a LCR of 483 MW in 2013 (includes 584 MW of QF generation) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the loss of Kern PP #5 or #3 230/115 kV transformer bank, which could thermally overload the parallel Kern PP #4 230/115 kV transformer. This limiting contingency establishes a LCR of 295 MW in 2013 (includes 584 MW of QF generation).

Effectiveness factors:

The following table shows units that are at least 5% effective:

Gen Bus Gen Name Gen ID Eff Fctr (%)

35066	PSE-BEAR	1	22%
35029	BADGERCK	1	22%
35023	DOUBLE C	1	22%
35027	HISIERRA	1	22%
35026	KERNFRNT	1	21%
35058	PSE-LVOK	1	21%
35028	OILDALE	1	21%
35062	DISCOVRY	1	21%
35046	SEKR	1	21%
35024	DEXEL +	1	21%
35036	MT POSO	1	15%
35035	ULTR PWR	1	15%
35052	CHEV.USA	1	6%

Weedpatch Sub-area

Weedpatch sub-area has been eliminated from this year's LCR analysis. Circuit breaker (CB) 42 at San Bernard substation which was normally closed for earlier year's analysis was open for this year's analysis. This results in a system configuration that by design drops the load in the area for the most critical contingency reported in previous analysis.

West Park Sub-area

The most critical contingency is the loss of common mode Kern - West Park # 1 & #2 115 kV lines, resulting in the overload of the 6/42 To Magunden section of Kern – Magunden - Witco 115 kV line. This limitation establishes a LCR of 115 MW (includes 46 MW of QF generation and 42 MW of deficiency) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this sub-area are needed therefore no effectiveness factor is required.

Changes compared to last year's results:

From 2012 the load forecast has increased by 201 MW and the LCR by 200 MW.

Kern Area Overall Requirements:

2013	QF/Selfgen	Market	Max. Qualifying
	(MW)	(MW)	Capacity (MW)
Available generation	584	0	584

2013	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ²²	295	0	295
Category C (Multiple) ²³	483	42	525

8. LA Basin Area

Area Definition

The transmission tie lines into the LA Basin Area are:

- 1) San Onofre San Luis Rey #1, #2, & #3 230 kV Lines
- 2) San Onofre Talega #1 & #2 230 kV Lines
- 3) Lugo Mira Loma #2 & #3 500 kV Lines
- 4) Lugo Rancho Vista #1 500 kV line
- 5) Sylmar Eagle Rock 230 kV Line
- 6) Sylmar Gould 230 kV Line
- 7) Vincent Mesa Cal 230 kV Line
- 8) Vincent Rio Hondo #1 & #2 230 kV Lines
- 9) Eagle Rock Pardee 230 kV Line
- 10) Devers Palo Verde 500 kV Line
- 11)Mirage Coachelv 230 kV Line
- 12)Mirage Ramon 230 kV Line
- 13)Mirage Julian Hinds 230 kV Line

These sub-stations form the boundary surrounding the LA Basin area:

- 1) San Onofre is in San Luis Rey is out
- 2) San Onofre is in Talega is out
- 3) Mira Loma is in Lugo is out
- 4) Rancho Vista is in Lugo is out
- 5) Eagle Rock is in Sylmar is out
- 6) Gould is in Sylmar is out
- 7) Mesa Cal is in Vincent is out
- 8) Rio Hondo is in Vincent is out
- 9) Eagle Rock is in Pardee is out
- 10) Devers is in Palo Verde is out
- 11)Mirage is in Coachelv is out

_

A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

23 Multiple contingencies means that the same in the standard stand

²³ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- 12)Mirage is in Ramon is out
- 13)Mirage is in Julian Hinds is out

Total 2013 busload within the defined area is 19,300 MW with 133 MW of losses and 27 MW pumps resulting in total load + losses + pumps of 19,460 MW.

Total units and qualifying capacity available in the LA Basin area:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNIT ID	LCR SUB-AREA NAME	NQC Comments	CAISO Tag
ALAMIT_7_UNIT 1	24001	ALAMT1 G	18	174.56	1	Western		Market
ALAMIT_7_UNIT 2	24002	ALAMT2 G	18	175.00	2	Western		Market
ALAMIT_7_UNIT 3	24003	ALAMT3 G	18	332.18	3	Western		Market
ALAMIT_7_UNIT 4	24004	ALAMT4 G	18	335.67	4	Western		Market
ALAMIT_7_UNIT 5	24005	ALAMT5 G	20	497.97	5	Western		Market
ALAMIT_7_UNIT 6	24161	ALAMT6 G	20	495.00	6	Western		Market
ANAHM_2_CANYN1	25211	CanyonGT	13.8	49.40	1	Western		MUNI
ANAHM_2_CANYN2	25212	CanyonGT	13.8	48.00	2	Western		MUNI
ANAHM_2_CANYN3	25213	CanyonGT	13.8	48.00	3	Western		MUNI
ANAHM_2_CANYN4	25214	CanyonGT	13.8	49.40	4	Western		MUNI
ANAHM_7_CT	25203	ANAHEIMG	13.8	40.64	1	Western	Aug NQC	MUNI
ARCOGN_2_UNITS	24011	ARCO 1G	13.8	54.28	1	Western	Aug NQC	QF/Selfgen
ARCOGN_2_UNITS	24012	ARCO 2G	13.8	54.28	2	Western	Aug NQC	QF/Selfgen
ARCOGN_2_UNITS	24013	ARCO 3G	13.8	54.28	3	Western	Aug NQC	QF/Selfgen
ARCOGN_2_UNITS	24014	ARCO 4G	13.8	54.28	4	Western	Aug NQC	QF/Selfgen
ARCOGN_2_UNITS	24163	ARCO 5G	13.8	27.14	5	Western	Aug NQC	QF/Selfgen
ARCOGN_2_UNITS	24164	ARCO 6G	13.8	27.15	6	Western	Aug NQC	QF/Selfgen
BARRE_2_QF	24016	BARRE	230	0.00		Western	Not modeled	QF/Selfgen
BARRE_6_PEAKER	29309	BARPKGEN	13.8	45.38	1	Western		Market
BRDWAY_7_UNIT 3	29007	BRODWYSC	13.8	65.00	1	Western		MUNI
BUCKWD_7_WINTCV	25634	BUCKWIND	115	0.15	W5	None	Aug NQC	Wind
CABZON_1_WINDA1	29290	CABAZON	33	11.29	1	None	Aug NQC	Wind
CENTER_2_QF	24203	CENTER S	66	18.10		Western	Not modeled Aug NQC	QF/Selfgen
CENTER_2_RHONDO	24203	CENTER S	66	1.91		Western	Not modeled	QF/Selfgen
CENTER_6_PEAKER	29308	CTRPKGEN	13.8	44.57	1	Western		Market
CENTRY_6_PL1X4	25302	CLTNCTRY	13.8	36.00	1	None	Aug NQC	MUNI
CHEVMN_2_UNITS	24022	CHEVGEN1	13.8	0.00	1	Western, El Nido	Aug NQC	QF/Selfgen
CHEVMN_2_UNITS	24023	CHEVGEN2	13.8	0.00	2	Western, El Nido	Aug NQC	QF/Selfgen
CHINO_2_QF	24024	CHINO	66	7.83		Western	Not modeled Aug NQC	QF/Selfgen
CHINO_2_SOLAR	24024	CHINO	66	0.00		Western	Not modeled	Market
CHINO_6_CIMGEN	24026	CIMGEN	13.8	25.29	1	Western	Aug NQC	QF/Selfgen
CHINO_6_SMPPAP	24140	SIMPSON	13.8	27.15	1	Western	Aug NQC	QF/Selfgen
CHINO_7_MILIKN	24024	CHINO	66	1.37		Western	Not modeled Aug NQC	Market
COLTON_6_AGUAM1	25303	CLTNAGUA	13.8	43.00	1	None		MUNI
CORONS_6_CLRWTR	24210	MIRALOMA	66	14.00		None	Not modeled	MUNI
CORONS_6_CLRWTR	24210	MIRALOMA	66	14.00		None	Not modeled	MUNI
DEVERS_1_QF	24815	GARNET	115	1.51	QF	None	Aug NQC	QF/Selfgen
DEVERS_1_QF	25632	TERAWND	115	2.94	QF	None	Aug NQC	QF/Selfgen

DEVERS_1_QF	25633	CAPWIND	115	0.56	QF	None	Aug NQC	QF/Selfgen
DEVERS 1 QF	25634	BUCKWIND	115	1.73	QF	None	Aug NQC	QF/Selfgen
DEVERS 1 QF	25635	ALTWIND	115	1.35	Q1	None	Aug NQC	QF/Selfgen
DEVERS 1 QF	25635	ALTWIND	115	2.50	Q2	None	Aug NQC	QF/Selfgen
DEVERS 1 QF	25636	RENWIND	115	0.59	Q1	None	Aug NQC	QF/Selfgen
DEVERS 1 QF	25636	RENWIND	115	2.28	Q2	None	Aug NQC	QF/Selfgen
					W1	None		
DEVERS_1_QF	25636	RENWIND	115	0.27			Aug NQC	QF/Selfgen
DEVERS_1_QF	25637	TRANWIND	115	6.68	QF	None	Aug NQC	QF/Selfgen
DEVERS_1_QF	25639	SEAWIND	115	2.01	QF	None	Aug NQC	QF/Selfgen
DEVERS_1_QF	25640	PANAERO	115	1.79	QF	None	Aug NQC	QF/Selfgen
DEVERS_1_QF	25645	VENWIND	115	1.53	EU	None	Aug NQC	QF/Selfgen
DEVERS_1_QF	25645	VENWIND	115	3.58	Q1	None	Aug NQC	QF/Selfgen
DEVERS_1_QF	25645	VENWIND	115	2.41	Q2	None	Aug NQC	QF/Selfgen
DEVERS_1_QF	25646	SANWIND	115	0.80	Q1	None	Aug NQC	QF/Selfgen
DEVERS_1_QF	25646	SANWIND	115	2.68	Q2	None	Aug NQC	QF/Selfgen
DMDVLY_1_UNITS	25425	ESRP P2	6.9	1.39		None	Not modeled Aug NQC	QF/Selfgen
DREWS_6_PL1X4	25301	CLTNDREW	13.8	36.00	1	None	Aug NQC	MUNI
DVLCYN_1_UNITS	25603	DVLCYN3G	13.8	67.15	3	None	Aug NQC	MUNI
DVLCYN_1_UNITS	25604	DVLCYN4G	13.8	67.15	4	None	Aug NQC	MUNI
DVLCYN_1_UNITS	25648	DVLCYN1G	13.8	50.35	1	None	Aug NQC	MUNI
DVLCYN_1_UNITS	25649	DVLCYN2G	13.8	50.35	2	None	Aug NQC	MUNI
ELLIS_2_QF	24197	ELLIS	66	0.00		Western, Ellis	Not modeled Aug NQC	QF/Selfgen
ELSEGN_7_UNIT 3	24047	ELSEG3 G	18	335.00	3	Western, El Nido		Market
ELSEGN_7_UNIT 4	24048	ELSEG4 G	18	335.00	4	Western, El Nido		Market
ETIWND_2_FONTNA	24055	ETIWANDA	66	0.81		None	Not modeled Aug NQC	QF/Selfgen
ETIWND_2_QF	24055	ETIWANDA	66	14.86		None	Not modeled Aug NQC	QF/Selfgen
ETIWND_2_SOLAR	24055	ETIWANDA	66	0.00		None	Not modeled Aug NQC	Market
ETIWND_6_GRPLND	29305	ETWPKGEN	13.8	42.53	1	None		Market
ETIWND_6_MWDETI	25422	ETI MWDG	13.8	10.37	1	None	Aug NQC	Market
ETIWND_7_MIDVLY	24055	ETIWANDA	66	1.54		None	Not modeled Aug NQC	QF/Selfgen
ETIWND_7_UNIT 3	24052	MTNVIST3	18	320.00	3	None		Market
ETIWND_7_UNIT 4	24053	MTNVIST4	18	320.00	4	None		Market
GARNET_1_UNITS	24815	GARNET	115	0.71	G1	None	Aug NQC	QF/Selfgen
GARNET_1_UNITS	24815	GARNET	115	0.25	G2	None	Aug NQC	QF/Selfgen
GARNET_1_UNITS	24815	GARNET	115	0.51	G3	None	Aug NQC	QF/Selfgen
GARNET_1_UNITS	24815	GARNET	115	0.25	PC	None	Aug NQC	QF/Selfgen
GARNET_1_WIND	24815	GARNET	115	0.66	W2	None	Aug NQC	Wind
GARNET_1_WIND	24815	GARNET	115	0.66	W3	None	Aug NQC	Wind
GLNARM_7_UNIT 1	29005	PASADNA1	13.8	22.30	1	Western		MUNI
GLNARM_7_UNIT 2	29006	PASADNA2	13.8	22.30	1	Western	NI - f - 1 1 1	MUNI
GLNARM_7_UNIT 3	29005	PASADNA1	13.8	44.83		Western	Not modeled	MUNI
GLNARM_7_UNIT 4	29006	PASADNA2	13.8	42.42		Western	Not modeled	MUNI
HARBGN_7_UNITS	24062	HARBOR G	13.8	76.28	1	Western		Market
HARBON 7 UNITS	24062	HARBOR G	13.8	11.86	HP	Western		Market
HARBGN_7_UNITS	25510	HARBORG4	4.16	11.86	LP 1	Western	Aug NOO	Market
HINSON_6_CARBGN	24020	CARBOGEN	13.8	21.46	1	Western	Aug NQC	Market

Market	Market	Market	Market	QF/Selfgen	Market	Market	Market	Market	Market	Market	Market	QF/Selfgen	MUNI	QF/Selfgen	QF/Selfgen	QF/Selfgen	QF/Selfgen	QF/Selfgen	QF/Selfgen	QF/Selfgen	QF/Selfgen	Market	N N N	Market	Market	Market	Wind	Wind	QF/Selfgen	QF/Selfgen	QF/Selfgen	QF/Selfgen	MUNI	QF/Selfgen	QF/Selfgen	Market	Market	Market	Market
				Aug NQC						Aug NQC	Aug NQC	Not modeled Aug NQC	Aug NQC	Not modeled Aug NQC	Not modeled Aug NQC	Aug NQC	Not modeled Aug NQC	Not modeled Aug NQC	Not modeled Aug NQC	Not modeled Aug NQC	Aug NQC		Not modeled Aug NQC	Aug NQC	Aug NQC	Aug NQC	Aug NGC	Aug NGC	Not modeled	Aug NQC	Not modeled Aug NQC	Not modeled Aug NQC	Not modeled Aug NQC	Not modeled Aug NQC	Not modeled Aug NQC	Not modeled Aug NQC			
Western	Western	Western	Western	Western	Western, Ellis	Western, Ellis	None	None	None	Valley	Valley	Western, Ellis	Western, El Nido	Western, El Nido	Western	Western	Western	Western	None	None	None	None	None	None	None	None	None	NON A	Western	Western	Western	None	None	None	None	Western	Western	Western	Western
- 0	2	3	4	-	-	2		1	1	_	-		_			1					-	~		-	2	e [S	70 83)	1							5	9	7
65.00	65.00	65.00	65.00	28.38	225.75	225.80	42.00	42.00	42.00	335.00	335.00	00.0	4.45	2.55	10.60	46.55	1.10	1.06	2.35	2.49	29.78	43.18	4.60	00'9	6.00	6.00	7.08	2.88	3.13	0.78	4.50	0.91	7.70	0.74	1.05	0.15	178.87	175.00	505.96
13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.8	19.5	19.5	230	13.8	99	99	13.8	99	99			13.8	13.8	99	13.8	13.8	13.8	115	115	99	66	99	99	99	99	99		18	18	20
	LBEACH2G	LBEACH3G	LBEACH4G	SERRFGEN	HUNT1 G	HUNT2 G	WINTECX2	WINTECX1	WINTEC8	IEEC-G1	IEEC-G2	JOHANNA	VENICE	LA FRESA	LAGUBELL	ICEGEN	LITEHIPE	MESA CAL			DELGEN	MRLPKGEN	MIRALOMA	MJVSPHN1	MJVSPHN1	MJVSPHN1	MOUNTWID	GNWINDOM	OLINDA	OLINDA	BARRE	PADUA	PADUA	PADUA	PADUA		REDON5 G	REDON6 G	REDON7 G
24078	24170	24171	24172	24139	24066	24067	29190	29191	29180	29041	29042	24072	24337	24073	24075	24070	24083	24209			24030	29307	24210	25657	25657	25657	29060	29060	24211	24211	24201	24111	24111	24111	24111		24121	24122	24123
	6_LBECH2	_6_LBECH3		_	7_UNIT 1	7_UNIT 2		INDIGO_1_UNIT 2	INDIGO_1_UNIT 3		INLDEM_5_UNIT 2	JOHANN_6_QFA1	LACIEN_2_VENICE	LAFRES_6_QF	LAGBEL_6_QF	LGHTHP_6_ICEGEN	LGHTHP_6_QF	MESAS_2_QF	MIRLOM_2_CORONA	MIRLOM_2_TEMESC	MIRLOM_6_DELGEN	MIRLOM_6_PEAKER	MIRLOM_7_MWDLKM	1_SIPHON	1_SIPHON	_	MTWIND 1 UNIT 1	1 UNIT 3	2 COYCRK	_2_QF	OLINDA_7_LNDFIL	PADUA_2_ONTARO	PADUA_6_MWDSDM	PADUA_6_QF	PADUA_7_SDIMAS	PWEST_1_UNIT		7_UNIT 6	REDOND_7_UNIT 7

REDOND_7_UNIT 8	24124	REDON8 G	20	495.90	8	Western		Market
RHONDO_2_QF	24213	RIOHONDO	66	2.54		Western	Not modeled Aug NQC	QF/Selfgen
RHONDO_6_PUENTE	24213	RIOHONDO	66	0.00		Western	Not modeled Aug NQC	Market
RVSIDE_2_RERCU3	24299	RERC2G3	13.8	48.50	1	None		MUNI
RVSIDE_2_RERCU4	24300	RERC2G4	13.8	48.50	1	None		MUNI
RVSIDE 6 RERCU1	24242	RERC1G	13.8	48.35	1	None		MUNI
RVSIDE 6 RERCU2	24243	RERC2G	13.8	48.50	1	None		MUNI
RVSIDE_6_SPRING	24244	SPRINGEN	13.8	36.00	1	None		Market
SANTGO 6 COYOTE	24133	SANTIAGO	66	6.08	1	Western, Ellis	Aug NQC	Market
SBERDO 2 PSP3	24921	MNTV-CT1	18	129.71	1	None	<u> </u>	Market
SBERDO 2 PSP3	24922	MNTV-CT2	18	129.71	1	None		Market
SBERDO 2 PSP3	24923	MNTV-ST1	18	225.08	1	None		Market
SBERDO 2 PSP4	24924	MNTV-CT3	18	129.71	1	None		Market
SBERDO 2 PSP4	24925	MNTV-CT4	18	129.71	1	None		Market
SBERDO 2 PSP4	24926	MNTV-ST2	18	225.08	1	None		Market
					•		Not modeled	
SBERDO_2_QF	24214	SANBRDNO	66	0.14		None	Aug NQC	QF/Selfgen
SBERDO_2_SNTANA	24214	SANBRDNO	66	0.27		None	Not modeled Aug NQC	QF/Selfgen
SBERDO_6_MILLCK	24214	SANBRDNO	66	1.28		None	Not modeled Aug NQC	QF/Selfgen
SONGS_7_UNIT 2	24129	S.ONOFR2	22	1122.00	2	Western		Nuclear
SONGS_7_UNIT 3	24130	S.ONOFR3	22	1124.00	3	Western		Nuclear
TIFFNY_1_DILLON				5.63		Western	Not modeled Aug NQC	Wind
VALLEY_5_PERRIS	24160	VALLEYSC	115	7.94		Valley	Not modeled Aug NQC	QF/Selfgen
VALLEY_5_REDMTN	24160	VALLEYSC	115	2.00		Valley	Not modeled Aug NQC	QF/Selfgen
VALLEY_7_BADLND	24160	VALLEYSC	115	0.54		Valley	Not modeled Aug NQC	Market
VALLEY_7_UNITA1	24160	VALLEYSC	115	1.34		Valley	Not modeled Aug NQC	Market
VERNON_6_GONZL1				5.75		Western	Not modeled	MUNI
VERNON_6_GONZL2				5.75		Western	Not modeled	MUNI
VERNON_6_MALBRG	24239	MALBRG1G	13.8	42.37	C1	Western		MUNI
VERNON_6_MALBRG	24240	MALBRG2G	13.8	42.37	C2	Western		MUNI
VERNON_6_MALBRG	24241	MALBRG3G	13.8	49.26	S3	Western		MUNI
VILLPK_2_VALLYV	24216	VILLA PK	66	4.10		Western	Not modeled Aug NQC	QF/Selfgen
VILLPK_6_MWDYOR	24216	VILLA PK	66	0.00		Western	Not modeled Aug NQC	MUNI
VISTA_6_QF	24902	VSTA	66	0.17	1	None	Aug NQC	QF/Selfgen
WALNUT_6_HILLGEN	24063	HILLGEN	13.8	47.07	1	Western	Aug NQC	QF/Selfgen
WALNUT_7_WCOVCT	24157	WALNUT	66	3.43		Western	Not modeled Aug NQC	Market
WALNUT_7_WCOVST	24157	WALNUT	66	2.98		Western	Not modeled Aug NQC	Market
WHTWTR 1 WINDA1	29061	WHITEWTR	33	8.26	1	None	Aug NQC	Wind
ARCOGN_2_UNITS	24018	BRIGEN	13.8	0.00	1	Western	No NQC - hist. data	Market
HINSON_6_QF	24064	HINSON	66	0.00	1	Western	No NQC - hist. data	QF/Selfgen
INLAND 6 UNIT	24071	INLAND	13.8	30.30	1	None	No NQC -	QF/Selfgen

				2 2			hist. data	
MOBGEN_6_UNIT 1	24094	MOBGEN	13.8	20.20	1	Western, El Nido	No NQC - hist. data	QF/Selfgen
NA	24324	SANIGEN	13.8	6.80	D1	None	No NQC - hist. data	QF/Selfgen
NA	24325	ORCOGEN	13.8	0.00	1	Western, Ellis	No NQC - hist. data	QF/Selfgen
NA	24327	THUMSGEN	13.8	40.00	1	Western	No NQC - hist. data	QF/Selfgen
NA	24328	CARBGEN2	13.8	15.2	1	Western	No NQC – hist. data	Market
NA	24329	MOBGEN2	13.8	20.2	1	Western, El Nido	No NQC – hist. data	QF/Selfgen
NA	24330	OUTFALL1	13.8	0.00	1	Western, El Nido	No NQC - hist. data	QF/Selfgen
NA	24331	OUTFALL2	13.8	0.00	1	Western, El Nido	No NQC - hist. data	QF/Selfgen
NA	24332	PALOGEN	13.8	3.60	D1	Western, El Nido	No NQC - hist. data	QF/Selfgen
NA	24341	COYGEN	13.8	0.00	1	Western, Ellis	No NQC - hist. data	QF/Selfgen
NA	24342	FEDGEN	13.8	0.00	1	Western	No NQC - hist. data	QF/Selfgen
NA	24839	BLAST	115	45.00	1	None	No NQC – hist. data	QF/Selfgen
NA	29021	WINTEC6	115	45.00	1	None	No NQC – hist. data	Wind
NA	29023	WINTEC4	12	16.50	1	None	No NQC – hist. data	Wind
NA	29060	SEAWEST	115	44.40	S1	None	No NQC – hist. data	Wind
NA	29060	SEAWEST	115	22.20	S2	None	No NQC – hist. data	Wind
NA	29060	SEAWEST	115	22.40	S3	None	No NQC – hist. data	Wind
NA	29260	ALTAMSA4	115	40.00	1	None	No NQC – hist. data	Wind
NA	29338	CLEARGEN	13.8	0.00	1	None	No NQC - hist. data	QF/Selfgen
NA	29339	DELGEN	13.8	0.00	1	None	No NQC - hist. data	QF/Selfgen
NA	29951	REFUSE	13.8	9.90	D1	Western	No NQC - Pmax	QF/Selfgen
NA	29953	SIGGEN	13.8	24.90	D1	Western	No NQC - Pmax	QF/Selfgen
HNTGBH_7_UNIT 3	24167	HUNT3 G	13.8	0.00	3	Western, Ellis	Retired	Market
HNTGBH_7_UNIT 4	24168	HUNT4 G	13.8	0.00	4	Western, Ellis	Retired	Market
New unit	29201	EME WCG1	13.8	100	1	Western	No NQC - Pmax	Market
New unit	29202	EME WCG2	13.8	100	1	Western	No NQC - Pmax	Market
New unit	29203	EME WCG3	13.8	100	1	Western	No NQC - Pmax	Market
New unit	29204	EME WCG4	13.8	100	1	Western	No NQC - Pmax	Market
New unit	29205	EME WCG5	13.8	100	1	Western	No NQC - Pmax	Market
New unit	29901	NRG ELG5	18	175	5	Western, El Nido	No NQC - Pmax	Market
New unit	29902	NRG ELG7	18	280	7	Western, El Nido	No NQC -	Market

							Pmax	
New unit	29903	NRG ELG6	18	175	6	Western, El Nido	No NQC - Pmax	Market

Major new projects modeled:

- 1. 3 new resources have been modeled
- 2. Huntington Beach #3 and #4 have been retired
- 3. Del Amo Ellis 230 kV line loops into Barre 230 kV substation
- 4. Recalibrate arming level for Santiago SPS

Critical Contingency Analysis Summary

LA Basin Overall:

The most critical contingency for LA Basin is the loss of one SONGS unit followed by Palo Verde-Devers 500 kV line, which could exceed the approved 6400 MW rating for the South of Lugo path. This limiting contingency establishes a LCR of 10,295 MW in 2013 (includes 810 MW of QF, 230 MW of Wind, 1166 MW of Muni and 2246 MW of Nuclear generation) as the minimum generation capacity necessary for reliable load serving capability within this area.

Effectiveness factors:

The following table has units that have at least 5% effectiveness to the abovementioned South of Lugo constraint within the LA Basin area:

Gen Bus	Gen Name	Gen ID	MW Eff Fctr (%)
24052	MTNVIST3	3	34
24053	MTNVIST4	4	34
24071	INLAND	1	32
25422	ETI MWDG	1	32
29305	ETWPKGEN	1	32
24921	MNTV-CT1	1	28
24922	MNTV-CT2	1	28
24923	MNTV-ST1	1	28
24924	MNTV-CT3	1	28
24925	MNTV-CT4	1	28
24926	MNTV-ST2	1	28
29041	IEEC-G1	1	28

29042	IEEC-G2	2	28
24905	RVCANAL1	R1	27
24906	RVCANAL2	R2	27
24907	RVCANAL3	R3	27
24908	RVCANAL4	R4	27
29190	WINTECX2	1	27
29191	WINTECX1	1	27
29180	WINTEC8	1	27
24815	GARNET	QF	27
24815	GARNET	W3	27
29023	WINTEC4	1	27
29021	WINTEC6	1	27
24242	RERC1G	1	27
24243	RERC2G	1	27
24244	SPRINGEN	1	27
25301	CLTNDREW	1	27
25302	CLTNCTRY	1	27
25303	CLTNAGUA	1	27
24299	RERC2G3	1	27
24300	RERC2G4	1	27
24839	BLAST	1	27
25648	DVLCYN1G	1	26
25649	DVLCYN2G	2	26
25603	DVLCYN3G	3	26
25604	DVLCYN4G	4	26
25632	TERAWND	QF	26
25634	BUCKWND	QF	26
25635	ALTWIND	Q1	26
25635	ALTWIND	Q2	26
25637	TRANWND	QF	26
25639	SEAWIND	QF	26
25640	PANAERO	QF	26
25645	VENWIND	EU	26
25645	VENWIND	Q2	26
25645	VENWIND	Q1	26
25646	SANWIND	Q2	26
29060	MOUNTWND	S1	26
29060	MOUNTWND	S3	26
29060	MOUNTWND	S2	26
29061	WHITEWTR	1	26
29260	ALTAMSA4	1	26
29290	CABAZON	1	26
25633	CAPWIND	QF	25

25657	MJVSPHN1	1	25
25658	MJVSPHN2	2	25
25659	MJVSPHN3	3	25
25203	ANAHEIMG	1	23
25211	CanyonGT 1	1	22
25212	CanyonGT 2	2	22
25213	CanyonGT 3	3	22
25214	CanyonGT 4	4	22
24030	DELGEN	1	21
29309	BARPKGEN	1	21
24026	CIMGEN	D1	21
24140	SIMPSON	D1	21
29307	MRLPKGEN	1	20
29338	CLEARGEN	1	20
29339	DELGEN	1	20
24005	ALAMT5 G	5	19
24066	HUNT1 G	1	19
24067	HUNT2 G	2	19
24167	HUNT3 G	3	19
24168	HUNT4 G	4	19
24129	S.ONOFR2	2	19
24130	S.ONOFR3	3	19
24133	SANTIAGO	1	19
24325	ORCOGEN	1	19
24341	COYGEN	1	19
24001	ALAMT1 G	1	18
24002	ALAMT2 G	2	18
24003	ALAMT3 G	3	18
24004	ALAMT4 G	4	18
24161	ALAMT6 G	6	18
24162	ALAMT7 G	R7	17
24063	HILLGEN	D1	17
29201	EME WCG1	1	17
29203	EME WCG3	1	17
29204	EME WCG4	1	17
29205	EME WCG5	1	17
29202	EME WCG2	1	17
24018	BRIGEN	1	16
29308	CTRPKGEN	1	16
29953	SIGGEN	D1	16
24011	ARCO 1G	1	15
24012	ARCO 2G	2	15
24013	ARCO 3G	3	15

24014	ARCO 4G	4	15
24163	ARCO 5G	5	15
24164	ARCO 6G	6	15
24020	CARBGEN1	1	15
24022	CHEVGEN1	1	15
24023	CHEVGEN2	2	15
24064	HINSON	1	15
24070	ICEGEN	D1	15
24170	LBEACH12	2	15
24171	LBEACH34	3	15
24094	MOBGEN1	1	15
24062	HARBOR G	1	15
25510	HARBORG4	LP	15
24062	HARBOR G	HP	15
24139	SERRFGEN	D1	15
24170	LBEACH12	1	15
24171	LBEACH34	4	15
24173	LBEACH5G	R5	15
24174	LBEACH6G	R6	15
24327	THUMSGEN	1	15
24328	CARBGEN2	1	15
24330	OUTFALL1	1	15
24331	OUTFALL2	1	15
24332	PALOGEN	D1	15
24333	REDON1 G	R1	15
24334	REDON2 G	R2	15
24335	REDON3 G	R3	15
24336	REDON4 G	R4	15
24337	VENICE	1	15
24079	LBEACH7G	R7	15
24080	LBEACH8G	R8	15
24081	LBEACH9G	R9	15
24047	ELSEG3 G	3	14
24048	ELSEG4 G	4	14
24121	REDON5 G	5	14
24122	REDON6 G	6	14
24123	REDON7 G	7	14
24124	REDON8 G	8	14
24329	MOBGEN2	1	14
29901	NRG ELG5	5	14
29903	NRG ELG6	6	14
29902	NRG ELS7	7	14
29951	REFUSE	D1	13

29209	BLY1ST1	1	13
29207	BLY1CT1	1	13
29208	BLY1CT2	1	13
24342	FEDGEN	1	13
24241	MALBRG3G	S3	12
24240	MALBRG2G	C2	12
24239	MALBRG1G	C1	12
29005	PASADNA1	1	10
29006	PASADNA2	1	10
29007	BRODWYSC	1	10

Valley Sub-Area:

The most critical contingency for the Valley sub-area is the loss of Palo Verde – Devers 500 kV line and Valley – Serrano 500 kV line or vice versa, which would result in voltage collapse. This limiting contingency establishes a LCR of 670 MW (includes 10 MW of QF generation) in 2013 as the generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The generators inside the sub-area have the same effectiveness factors.

Western Sub-Area:

The most critical contingency for the Western sub-area is the loss of Serrano-Villa Park #2 230 kV line followed by the loss of the Serrano-Lewis 230 kV line or vice versa, which would result in thermal overload of the remaining Serrano-Villa Park 230 kV line. This limiting contingency establishes a LCR of 5540 MW (includes 623 MW of QF, 6 MW of Wind, 582 MW of Muni and 2246 MW of nuclear generation) in 2013 as the generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units that have at least 5% effectiveness to the abovementioned constraint:

			MW Eff Fctr
Gen Bus	Gen Name	Gen ID	(%)
29309	BARPKGEN	1	31

25203	ANAHEIMG	1	30
25211	CanyonGT 1	1	29
25212	CanyonGT 2	2	29
25213	CanyonGT 3	3	29
25214	CanyonGT 4	4	29
24005	ALAMT5 G	5	23
24161	ALAMT6 G	6	23
24001	ALAMT1 G	1	22
24002	ALAMT2 G	2	22
24003	ALAMT3 G	3	22
24004	ALAMT4 G	4	22
24162	ALAMT7 G	R7	22
24066	HUNT1 G	1	22
24067	HUNT2 G	2	22
24167	HUNT3 G	3	22
24168	HUNT4 G	4	22
24325	ORCOGEN	1	21
24133	SANTIAGO	1	16
24341	COYGEN	1	16
24011	ARCO 1G	1	15
24012	ARCO 2G	2	15
24013	ARCO 3G	3	15
24014	ARCO 4G	4	15
24018	BRIGEN	1	15
24020	CARBGEN1	1	15
24064	HINSON	1	15
24070	ICEGEN	D1	15
24170	LBEACH12	2	15
24171	LBEACH34	3	15
24062	HARBOR G	1	15
25510	HARBORG4	LP	15
24062	HARBOR G	HP	15
24139	SERRFGEN	D1	15
24170	LBEACH12	1	15
24171	LBEACH34	4	15
24173	LBEACH5G	R5	15
24174	LBEACH6G	R6	15
24327	THUMSGEN	1	15
24328	CARBGEN2	1	15
24079	LBEACH7G	R7	15
24080	LBEACH8G	R8	15
24081	LBEACH9G	R9	15
24163	ARCO 5G	5	14

24164	ARCO 6G	6	14
24022	CHEVGEN1	1	14
24023	CHEVGEN2	2	14
24048	ELSEG4 G	4	14
24094	MOBGEN1	1	14
29308	CTRPKGEN	1	14
24329	MOBGEN2	1	14
24330	OUTFALL1	1	14
24331	OUTFALL2	1	14
24332	PALOGEN	D1	14
24333	REDON1 G	R1	14
24334	REDON2 G	R2	14
24335	REDON3 G	R3	14
24336	REDON4 G	R4	14
24337	VENICE	1	14
29953	SIGGEN	D1	14
29901	NRG ELG5	5	14
29903	NRG ELG6	6	14
29902	NRG ELS7	7	14
24047	ELSEG3 G	3	13
24121	REDON5 G	5	13
24122	REDON6 G	6	13
24123	REDON7 G	7	13
24124	REDON8 G	8	13
29951	REFUSE	D1	12
24342	FEDGEN	1	12
24241	MALBRG3G	S3	11
24240	MALBRG2G	C2	11
24239	MALBRG1G	C1	11
29005	PASADNA1	1	9
29006	PASADNA2	1	9
29007	BRODWYSC	1	9
24063	HILLGEN	D1	6
29201	EME WCG1	1	5
29203	EME WCG3	1	5
29204	EME WCG4	1	5
29205	EME WCG5	1	5
29202	EME WCG2	1	5

There are numerous (about 40) other combinations of contingencies in the area that could overload a significant number of 230 kV lines in this sub-area and have less LCR need. As such, anyone of them (combination of contingencies) could become binding

for any given set of procured resources. As a result, effectiveness factors may not be the best indicator towards informed procurement.

Ellis sub-area

The Del Amo – Ellis loop-in project along with recalibration of the Santiago SPS eliminates the LCR need for the Ellis sub-area.

El Nido sub-area

The most critical contingency for the El Nido sub-area is the loss of the La Fresa — Hinson 230 kV line followed by the loss of the La Fresa — Redondo #1 and #2 230 kV lines, which would cause voltage collapse. This limiting contingency establishes a LCR of 386 MW in 2013 (which includes 47 MW of QF and 4 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The generators inside the sub-area have the same effectiveness factors.

Changes compared to last year's results:

Overall the load forecast went down by 470 MW resulting in 570 MW decrease in LCR.

LA Basin Overall Requirements:

2013 QF/Wind Muni Max. Qualifying Nuclear Market (MW) (MW) (MW) (MW) Capacity (MW) Available generation 1040 1166 2246 8675 13127

2013	Existing Generation	Deficiency	Total MW LCR
	Capacity Needed (MW)	(MW)	Need
Category B (Single) ²⁴	10,295	0	10,295
Category C (Multiple) ²⁵	10,295	0	10,295

_

²⁴ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

operations standards.

25 Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

9. Big Creek/Ventura Area

Area Definition

The transmission tie lines into the Big Creek/Ventura Area are:

- 1) Antelope #1 and #2 500/230 kV Transformers
- 2) Sylmar-Pardee #1 230 kV Line
- 3) Sylmar-Pardee #2 230 kV Line
- 4) Eagle Rock-Pardee #1 230 kV Line
- 5) Vincent-Pardee 230 kV Line
- 6) Vincent-Santa Clara 230 kV Line

These sub-stations form the boundary surrounding the Big Creek/Ventura area:

- 1) Antelope 500 kV is out Antelope 230 KV is in
- 2) Sylmar is out Pardee is in
- 3) Sylmar is out Pardee is in
- 4) Eagle Rock is out Pardee is in
- 5) Vincent is out Pardee is in
- 6) Vincent is out Santa Clara is in

Total 2013 busload within the defined area is 4164 MW with 77 MW of losses and 355 MW of pumps resulting in total load + losses + pumps of 4596 MW.

Total units and qualifying capacity available in the Big Creek/Ventura area:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNIT ID	LCR SUB- AREA NAME	NQC Comments	CAISO Tag
ALAMO_6_UNIT	25653	ALAMO SC	13.8	16.00	1	Big Creek	Aug NQC	Market
ANTLPE_2_QF	24457	ARBWIND	66	2.91	1	Big Creek	Aug NQC	Wind
ANTLPE_2_QF	24458	ENCANWND	66	15.09	1	Big Creek	Aug NQC	Wind
ANTLPE_2_QF	24459	FLOWIND	66	5.45	1	Big Creek	Aug NQC	Wind
ANTLPE_2_QF	24460	DUTCHWND	66	1.87	1	Big Creek	Aug NQC	Wind
ANTLPE_2_QF	24465	MORWIND	66	7.49	1	Big Creek	Aug NQC	Wind
ANTLPE_2_QF	24491	OAKWIND	66	2.41	1	Big Creek	Aug NQC	Wind
ANTLPE_2_QF	28501	MIDWIND	12	2.41	1	Big Creek	Aug NQC	Wind
ANTLPE_2_QF	28502	SOUTHWND	12	0.88	1	Big Creek	Aug NQC	Wind
ANTLPE_2_QF	28503	NORTHWND	12	2.59	1	Big Creek	Aug NQC	Wind
ANTLPE_2_QF	28504	ZONDWND1	12	1.76	1	Big Creek	Aug NQC	Wind
ANTLPE_2_QF	28505	ZONDWND2	12	1.71	1	Big Creek	Aug NQC	Wind
ANTLPE_2_QF	28506	BREEZE1	12	0.60	1	Big Creek	Aug NQC	Wind
ANTLPE_2_QF	28507	BREEZE2	12	1.07	1	Big Creek	Aug NQC	Wind
BIGCRK_2_EXESWD	24306	B CRK1-1	7.2	19.38	1	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24306	B CRK1-1	7.2	21.03	2	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24307	B CRK1-2	13.8	21.03	3	Big Creek, Rector, Vestal	Aug NQC	Market

BIGCRK_2_EXESWD	24307	B CRK1-2	13.8	30.39	4	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24308	B CRK2-1	13.8	49.48	1	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24308	B CRK2-1	13.8	50.64	2	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24309	B CRK2-2	7.2	18.22	3	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24309	B CRK2-2	7.2	19.19	4	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24310	B CRK2-3	7.2	16.55	5	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24310	B CRK2-3	7.2	18.02	6	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24311	B CRK3-1	13.8	34.09	1	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24311	B CRK3-1	13.8	34.09	2	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24312	B CRK3-2	13.8	34.09	3	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24312	B CRK3-2	13.8	39.93	4	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24313	B CRK3-3	13.8	37.99	5	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24314	B CRK 4	11.5	49.09	41	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24314	B CRK 4	11.5	49.28	42	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24315	B CRK 8	13.8	23.76	81	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24315	B CRK 8	13.8	42.85	82	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24317	MAMOTH1G	13.8	91.07	1	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24318	MAMOTH2G	13.8	91.07	2	Big Creek, Rector, Vestal	Aug NQC	Market
BIGCRK_2_EXESWD	24323	PORTAL	4.8	9.35	1	Big Creek, Rector, Vestal	Aug NQC	Market
EASTWD_7_UNIT	24319	EASTWOOD	13.8	199.00	1	Big Creek, Rector, Vestal		Market
EDMONS_2_NSPIN	25605	EDMON1AP	14.4	23.27	1	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25606	EDMON2AP	14.4	23.27	2	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25607	EDMON3AP	14.4	23.27	3	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25607	EDMON3AP	14.4	23.27	4	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25608	EDMON4AP	14.4	23.27	5	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25608	EDMON4AP	14.4	23.27	6	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25609	EDMON5AP	14.4	23.27	7	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25609	EDMON5AP	14.4	23.27	8	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25610	EDMON6AP	14.4	23.27	9	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25610	EDMON6AP	14.4	23.27	10	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25611	EDMON7AP	14.4	23.26	11	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25611	EDMON7AP	14.4	23.26	12	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25612	EDMON8AP	14.4	23.26	13	Big Creek	Pumps	MUNI
EDMONS_2_NSPIN	25612	EDMON8AP	14.4	23.26	14	Big Creek	Pumps	MUNI
GOLETA_2_QF	24057	GOLETA	66	0.14		Ventura, S.Clara, Moorpark	Not modeled Aug NQC	QF/Selfgen

GOLETA_6_ELLWOD	28004	ELLWOOD	13.8	54.00	1	Ventura, S.Clara, Moorpark		Market
GOLETA_6_EXGEN	24057	GOLETA	66	1.17		Ventura, S.Clara, Moorpark	Not modeled Aug NQC	QF/Selfgen
GOLETA_6_GAVOTA	24057	GOLETA	66	1.41		Ventura, S.Clara, Moorpark	Not modeled Aug NQC	QF/Selfgen
GOLETA_6_TAJIGS	24057	GOLETA	66	2.90		Ventura, S.Clara, Moorpark	Not modeled Aug NQC	Market
KERRGN_1_UNIT 1	24437	KERNRVR	66	9.03	1	Big Creek	Aug NQC	Market
LEBECS_2_UNITS	28051	PSTRIAG1	18	157.90	G1	Big Creek	Aug NQC	Market
LEBECS_2_UNITS	28052	PSTRIAG2	18	157.90	G2	Big Creek	Aug NQC	Market
LEBECS_2_UNITS	28053	PSTRIAS1	18	162.40	S1	Big Creek	Aug NQC	Market
LEBECS_2_UNITS	28054	PSTRIAG3	18	157.90	G3	Big Creek	Aug NQC	Market
LEBECS_2_UNITS	28055	PSTRIAS2	18	78.90	S2	Big Creek	Aug NQC	Market
MNDALY_7_UNIT 1	24089	MANDLY1G	13.8	215.00	1	Ventura, Moorpark		Market
MNDALY_7_UNIT 2	24090	MANDLY2G	13.8	215.29	2	Ventura, Moorpark		Market
MNDALY_7_UNIT 3	24222	MANDLY3G	16	130.00	3	Ventura, S.Clara, Moorpark		Market
MONLTH_6_BOREL	24456	BOREL	66	8.98	1	Big Creek	Aug NQC	QF/Selfgen
MOORPK_2_CALABS	24099	MOORPARK	230	6.96		Ventura, Moorpark	Not modeled	Market
MOORPK_6_QF	24098	MOORPARK	66	26.44		Ventura, Moorpark	Not modeled Aug NQC	QF/Selfgen
MOORPK_7_UNITA1	24098	MOORPARK	66	1.24		Ventura, Moorpark	Not modeled Aug NQC	QF/Selfgen
OMAR_2_UNIT 1	24102	OMAR 1G	13.8	77.25	1	Big Creek		QF/Selfgen
OMAR_2_UNIT 2	24103	OMAR 2G	13.8	77.25	2	Big Creek		QF/Selfgen
OMAR_2_UNIT 3	24104	OMAR 3G	13.8	77.25	3	Big Creek		QF/Selfgen
OMAR_2_UNIT 4	24105	OMAR 4G	13.8	77.25	4	Big Creek		QF/Selfgen
ORMOND_7_UNIT 1	24107	ORMOND1G	26	741.27	1	Ventura, Moorpark		Market
ORMOND_7_UNIT 2	24108	ORMOND2G	26	775.00	2	Ventura, Moorpark		Market
OSO_6_NSPIN	25614	OSO A P	13.2	3.63	1	Big Creek	Pumps	MUNI
OSO_6_NSPIN	25614	OSO A P	13.2	3.63	2	Big Creek	Pumps	MUNI
OSO_6_NSPIN	25614	OSO A P	13.2	3.63	3	Big Creek	Pumps	MUNI
OSO_6_NSPIN	25614	OSO A P	13.2	3.63	4	Big Creek	Pumps	MUNI
OSO_6_NSPIN	25615	OSO B P	13.2	3.63	5	Big Creek	Pumps	MUNI
OSO_6_NSPIN	25615	OSO B P	13.2	3.63	6	Big Creek	Pumps	MUNI
OSO_6_NSPIN	25615	OSO B P	13.2	3.63	7	Big Creek	Pumps	MUNI
OSO_6_NSPIN	25615	OSO B P	13.2	3.63	8	Big Creek	Pumps	MUNI
PANDOL_6_UNIT	24113	PANDOL	13.8	24.81	1	Big Creek, Vestal	Aug NQC	QF/Selfgen
PANDOL_6_UNIT	24113	PANDOL	13.8	20.21	2	Big Creek, Vestal	Aug NQC	QF/Selfgen
RECTOR_2_KAWEAH	24212	RECTOR	66	1.45		Big Creek, Rector, Vestal	Not modeled Aug NQC	Market
RECTOR_2_KAWH 1	24212	RECTOR	66	0.71		Big Creek, Rector, Vestal	Not modeled Aug NQC	Market
RECTOR_2_QF	24212	RECTOR	66	5.34		Big Creek,	Not modeled	QF/Selfgen

			1			Rector, Vestal	Aug NQC	
RECTOR_7_TULARE	24212	RECTOR	66	1.60		Big Creek, Rector, Vestal	Not modeled	QF/Selfgen
SAUGUS_2_TOLAND	24135	SAUGUS	66	0.72		Big Creek	Not modeled Aug NQC	Market
SAUGUS_6_MWDFTH	24135	SAUGUS	66	7.50		Big Creek	Not modeled Aug NQC	MUNI
SAUGUS_6_PTCHGN	24118	PITCHGEN	13.8	19.12	1	Big Creek	Aug NQC	MUNI
SAUGUS_6_QF	24135	SAUGUS	66	0.92		Big Creek	Not modeled Aug NQC	QF/Selfgen
SAUGUS_7_CHIQCN	24135	SAUGUS	66	6.67		Big Creek	Not modeled Aug NQC	Market
SAUGUS_7_LOPEZ	24135	SAUGUS	66	5.39		Big Creek	Not modeled Aug NQC	QF/Selfgen
SNCLRA_6_OXGEN	24110	OXGEN	13.8	33.53	1	Ventura, S.Clara, Moorpark	Aug NQC	QF/Selfgen
SNCLRA_6_PROCGN	24119	PROCGEN	13.8	46.16	1	Ventura, S.Clara, Moorpark	Aug NQC	Market
SNCLRA_6_QF	24127	S.CLARA	66	1.09	1	Ventura, S.Clara, Moorpark	Aug NQC	QF/Selfgen
SNCLRA_6_WILLMT	24159	WILLAMET	13.8	12.63	1	Ventura, S.Clara, Moorpark	Aug NQC	QF/Selfgen
SPRGVL_2_QF	24215	SPRINGVL	66	0.25		Big Creek, Rector, Vestal	Not modeled Aug NQC	QF/Selfgen
SPRGVL_2_TULE	24215	SPRINGVL	66	0.63		Big Creek, Rector, Vestal	Not modeled Aug NQC	Market
SPRGVL_2_TULESC	24215	SPRINGVL	66	0.39		Big Creek, Rector, Vestal	Not modeled Aug NQC	Market
SYCAMR_2_UNITS	24143	SYCCYN1G	13.8	57.56	1	Big Creek	Aug NQC	QF/Selfgen
SYCAMR_2_UNITS	24144	SYCCYN2G	13.8	57.56	2	Big Creek	Aug NQC	QF/Selfgen
SYCAMR_2_UNITS	24145	SYCCYN3G	13.8	57.56	3	Big Creek	Aug NQC	QF/Selfgen
SYCAMR_2_UNITS	24146	SYCCYN4G	13.8	57.55	4	Big Creek	Aug NQC	QF/Selfgen
TENGEN_2_PL1X2	24148	TENNGEN1	13.8	18.35	1	Big Creek	Aug NQC	Market
TENGEN_2_PL1X2	24149	TENNGEN2	13.8	18.35	2	Big Creek	Aug NQC	Market
VESTAL_2_KERN	24152	VESTAL	66	6.72	1	Big Creek, Vestal	Aug NQC	QF/Selfgen
VESTAL_6_QF	24152	VESTAL	66	5.06		Big Creek, Vestal	Not modeled Aug NQC	QF/Selfgen
VESTAL_6_ULTRGN	24150	ULTRAGEN	13.8	34.70	1	Big Creek, Vestal	Aug NQC	QF/Selfgen
VESTAL_6_WDFIRE	28008	LAKEGEN	13.8	5.57	1	Big Creek, Vestal	Aug NQC	QF/Selfgen
WARNE_2_UNIT	25651	WARNE1	13.8	38.00	1	Big Creek	Aug NQC	Market
WARNE_2_UNIT	25652	WARNE2	13.8	38.00	1	Big Creek	Aug NQC	Market
APPGEN_6_UNIT 1	24009	APPGEN1G	13.8	0.00	1	Big Creek	No NQC - hist. data	Market
APPGEN_6_UNIT 1	24010	APPGEN2G	13.8	0.00	2	Big Creek	No NQC - hist. data	Market
MNDALY_6_MCGRTH	29306	MCGPKGEN	13.8	47.00	1	Ventura, S.Clara, Moorpark	No NQC - hist. data	Market
NA	24326	Exgen1	13.8	0.00	S1	Ventura, S.Clara, Moorpark	No NQC - hist. data	QF/Selfgen

NA	24340	CHARMIN	13.8	15.20	1	Ventura, S.Clara, Moorpark	No NQC - hist. data	QF/Selfgen
NA	24362	Exgen2	13.8	0.00	G1	Ventura, S.Clara, Moorpark	No NQC - hist. data	QF/Selfgen
NA	24370	Kawgen	13.8	0.00	1	Big Creek, Rector, Vestal	No NQC - hist. data	Market
NA	24372	KR 3-1	13.8	0.00	1	Big Creek, Vestal	No NQC - hist. data	QF/Selfgen
NA	24373	KR 3-2	13.8	0.00	1	Big Creek, Vestal	No NQC - hist. data	QF/Selfgen
NA	24422	PALMDALE	66	0.00	1	Big Creek	No NQC - hist. data	Market
NA	24436	GOLDTOWN	66	0.00	1	Big Creek	No NQC - hist. data	Market

Major new projects modeled:

1. Segments of TRTP project

<u>Critical Contingency Analysis Summary</u>

Big Creek/Ventura overall:

The most critical contingency is the loss of the Lugo-Victorville 500 kV followed by Sylmar-Pardee #1 or #2 230 kV line, which could thermally overload the remaining Sylmar-Pardee 230 kV line. This limiting contingency establishes a LCR of 2241 MW in 2013 (includes 752 MW of QF, 381 MW of Muni and 46 MW of Wind generation) as the minimum generation capacity necessary for reliable load serving capability within this area.

The most critical single contingency is the loss of Sylmar-Pardee #1 (or # 2) line followed by Ormond Beach Unit #2, which could thermally overload the remaining Sylmar-Pardee 230 kV line. This limiting contingency establishes a LCR of 2161 MW in 2013 (includes 752 MW of QF, 381 MW of Muni and 46 MW of Wind generation).

Effectiveness factors:

The following table has units that have at least 5% effectiveness to any one of the Sylmar-Pardee 230 kV lines after the loss of the Lugo-Victorville 500 kV followed by one of the other Sylmar-Pardee 230 kV line in this area:

Gen Bus Gen Name Gen ID MW Eff Fctr

24118	PITCHGEN	D1	35
24148	TENNGEN1	D1	35
24149	TENNGEN2	D2	35
24009	APPGEN1G	1	34
24010	APPGEN2G	2	34
24107	ORMOND1G	1	34
24108	ORMOND2G	2	34
24361	APPGEN3G	3	34
25651	WARNE1	1	33
25652	WARNE2	1	33
24090	MANDLY2G	2	32
29306	MCGPKGEN	1	32
24089	MANDLY1G	1	31
29004	ELLWOOD	1	31
29952	CAMGEN	D1	31
24326	EXGEN1	S1	31
24362	EXGEN2	G1	31
29055	PSTRIAS2	S2	30
29054	PSTRIAG3	G3	30
29053	PSTRIAS1	S1	30
29052	PSTRIAG2	G2	30
29051	PSTRIAG1	G1	30
25605	EDMON1AP	1	30
25606	EDMON2AP	2	30
25607	EDMON3AP	3	30
25607	EDMON3AP	4	30
25608	EDMON4AP	5	30
25608	EDMON4AP	6	30
25609	EDMON5AP	7	30
25609	EDMON5AP	8	30
25610	EDMON6AP	9	30
25610	EDMON6AP	10	30
25612	EDMON8AP	13	30
25612	EDMON8AP	14	30
24127	S.CLARA	1	30
24110	OXGEN	D1	30
24119	PROCGEN	D1	30
24159	WILLAMET	D1	30
24340	CHARMIN	1	30
25611	EDMON7AP	11	29
25611	EDMON7AP	12	29

24222	MANDLY3G	3	29
25614	OSO A P	1	29
25614	OSO A P	2	29
25615	OSO B P	7	29
25615	OSO B P	8	29
25653	ALAMO SC	1	29
24370	KAWGEN	1	28
24113	PANDOL	1	27
24113	PANDOL	2	27
29008	LAKEGEN	1	27
24150	ULTRAGEN	1	27
24152	VESTAL	1	27
24372	KR 3-1	1	27
24373	KR 3-2	2	27
24102	OMAR 1G	1	26
24103	OMAR 2G	2	26
24104	OMAR 3G	3	26
24105	OMAR 4G	4	26
24143	SYCCYN1G	1	26
24144	SYCCYN2G	2	26
24145	SYCCYN3G	3	26
24146	SYCCYN4G	4	26
24319	EASTWOOD	1	25
24306	B CRK1-1	1	25
24306	B CRK1-1	2	25
24307	B CRK1-2	3	25
24307	B CRK1-2	4	25
24308	B CRK2-1	1	25
24308	B CRK2-1	2	25
24309	B CRK2-2	3	25
24309	B CRK2-2	4	25
24310	B CRK2-3	5	25
24310	B CRK2-3	6	25
24311	B CRK3-1	1	25
24311	B CRK3-1	2	25
24312	B CRK3-2	3	25
24312	B CRK3-2	4	25
24313	B CRK3-3	5	25
24314	B CRK 4	41	25
24314	B CRK 4	42	25

24315	B CRK 8	81	25
24315	B CRK 8	82	25
24317	MAMOTH1G	1	25
24318	MAMOTH2G	2	25
24437	KERNRVR	1	22
24457	ARBWIND	1	17
24465	MORWIND	1	17
24481	MIDWIND	1	17
24483	NORTHWND	1	17
24484	ZONDWND1	1	17
24485	ZONDWND2	1	17
24458	ENCANWND	1	16
24459	FLOWIND	1	16
24460	DUTCHWND	1	16
24436	GOLDTOWN	1	16
24456	BOREL	1	15

Rector Sub-area

The most critical contingency for the Rector sub-area is the loss of one of the Rector-Vestal 230 kV lines with the Eastwood unit out of service, which would thermally overload the remaining Rector-Vestal 230 kV line. This limiting contingency establishes a LCR of 601 MW (includes 7 MW of QF generation) in 2013 as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units that have at least 5% effectiveness to the abovementioned constraint within Rector sub-area:

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
24370	KAWGEN	1	45
24319	EASTWOOD	1	41
24306	B CRK1-1	1	41
24306	B CRK1-1	2	41
24307	B CRK1-2	3	41
24307	B CRK1-2	4	41
24323	PORTAL	1	41
24308	B CRK2-1	1	40
24308	B CRK2-1	2	40
24309	B CRK2-2	3	40
24309	B CRK2-2	4	40
24315	B CRK 8	81	40
24315	B CRK 8	82	40

24310	B CRK2-3	5	39
24310	B CRK2-3	6	39
24311	B CRK3-1	1	39
24311	B CRK3-1	2	39
24312	B CRK3-2	3	39
24312	B CRK3-2	4	39
24313	B CRK3-3	5	39
24317	MAMOTH1G	1	39
24318	MAMOTH2G	2	39
24314	B CRK 4	41	38
24314	B CRK 4	42	38

Vestal Sub-area

The most critical contingency for the Vestal sub-area is the loss of one of the Magunden-Vestal 230 kV lines with the Eastwood unit out of service, which would thermally overload the remaining Magunden-Vestal 230 kV line. This limiting contingency establishes a LCR of 801 MW in 2013 (which includes 104 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The following table has units that have at least 5% effectiveness to the abovementioned constraint within Vestal sub-area:

Gen Bus	Gen Name	Gen ID	Eff Fctr (%)
28008	LAKEGEN	1	46
24113	PANDOL	1	45
24113	PANDOL	2	45
24150	ULTRAGEN	1	45
24372	KR 3-1	1	45
24373	KR 3-2	2	45
24152	VESTAL	1	45
24370	KAWGEN	1	45
24319	EASTWOOD	1	24
24306	B CRK1-1	1	24
24306	B CRK1-1	2	24
24307	B CRK1-2	3	24
24307	B CRK1-2	4	24
24308	B CRK2-1	1	24
24308	B CRK2-1	2	24
24309	B CRK2-2	3	24
24309	B CRK2-2	4	24
24310	B CRK2-3	5	24
24310	B CRK2-3	6	24

24315	B CRK 8	81	24
24315	B CRK 8	82	24
24323	PORTAL	1	24
24311	B CRK3-1	1	23
24311	B CRK3-1	2	23
24312	B CRK3-2	3	23
24312	B CRK3-2	4	23
24313	B CRK3-3	5	23
24317	MAMOTH1G	1	23
24318	MAMOTH2G	2	23
24314	B CRK 4	41	22
24314	B CRK 4	42	22

S. Clara sub-areas

The most critical contingency for the S.Clara sub-area is the loss of the Pardee to S.Clara 230 kV line followed by the loss of the Moorpark to S.Clara #1 and #2 230 kV lines, which would cause voltage collapse. This limiting contingency establishes a LCR of 264 MW in 2013 (which includes 65 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The generators inside the sub-area have the same effectiveness factors.

Moorpark sub-areas

The most critical contingency for the Moorpark sub-area is the loss of one of the Pardee to Moorpark 230 kV lines followed by the loss of the remaining two Moorpark to Pardee 230 kV lines, which would cause voltage collapse. This limiting contingency establishes a LCR of 422 MW in 2013 (which includes 93 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

The generators inside the sub-area have the same effectiveness factors.

Changes compared to last year's results:

Overall the load forecast went down by 97 MW. The new Antelope 500/230 kV #1 and #2 transformers have been modeled as part of the TRTP. The overall effect is that the

LCR has decreased by 852 MW. The majority of the LCR decrease is due to load allocation change within the Big Creek Ventura.

Big Creek Overall Requirements:

2013	QF/Wind	MUNI	Market	Max. Qualifying
	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	798	381	4097	5276

2013	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ²⁶	2161	0	2161
Category C (Multiple) ²⁷	2241	0	2241

10. San Diego-Imperial Valley Area

Area Definition

The transmission tie lines forming a boundary around the Greater San Diego-Imperial Valley area include:

- 1) Imperial Valley North Gila 500 kV Line
- 2) Otay Mesa Tijuana 230 kV Line
- 3) San Onofre San Luis Rey #1 230 kV Line
- 4) San Onofre San Luis Rey #2 230 kV Line
- 5) San Onofre San Luis Rey #3 230 kV Line
- 6) San Onofre Talega #1 230 kV Line
- 7) San Onofre Talega #2 230 kV Line
- 8) Imperial Valley El Centro 230 kV Line
- 9) Imperial Valley Dixieland 230 kV Line
- 10) Imperial Valley La Rosita 230 kV Line

The substations that delineate the Greater San Diego-Imperial Valley area are:

- 1) Imperial Valley is in North Gila is out
- 2) Otay Mesa is in Tijuana is out
- 3) San Onofre is out San Luis Rey is in

A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

27 Multiple contingencies received the till and the system will be able the survive the loss of a single element, however the operations will not have any means (other than load drop) in order to bring the system within a safe operation standards.

²⁷ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

- San Onofre is out San Luis Rey is in 4)
- 5) San Onofre is out San Luis Rey is in
- San Onofre is out Talega is in San Onofre is out Talega is in 6)
- 7)
- Imperial Valley is in El Centro is out 8)
- Imperial Valley is in Dixieland is out 9)
- 10) Imperial Valley is in La Rosita is out

Total 2013 busload within the defined area: 4990 MW with 124 MW of losses resulting in total load + losses of 5114 MW.

Total units and qualifying capacity available in this area:

MKT/SCHED RESOURCE ID	BUS #	BUS NAME	kV	NQC	UNIT ID	LCR SUB-AREA NAME	NQC Comments	CAISO Tag
BORDER_6_UNITA1	22149	CALPK_BD	13.8	48.98	1	San Diego		Market
CBRLLO_6_PLSTP1	22092	CABRILLO	69	2.23	1	San Diego	Aug NQC	QF/Selfgen
CCRITA_7_RPPCHF	22124	CHCARITA	138	3.69	1	San Diego	Aug NQC	QF/Selfgen
CHILLS_1_SYCENG	22120	CARLTNHS	138	0.26	1	San Diego	Aug NQC	QF/Selfgen
CHILLS_7_UNITA1	22120	CARLTNHS	138	1.31	2	San Diego	Aug NQC	QF/Selfgen
CPSTNO_7_PRMADS	22112	CAPSTRNO	138	4.73	1	San Diego	Aug NQC	QF/Selfgen
CRSTWD_6_KUMYAY	22915	KUMEYAAY	34.5	6.70	1	San Diego	Aug NQC	Wind
DIVSON_6_NSQF	22172	DIVISION	69	34.41	1	San Diego	Aug NQC	QF/Selfgen
EGATE_7_NOCITY	22204	EASTGATE	69	0.21	1	San Diego	Aug NQC	QF/Selfgen
ELCAJN_6_LM6K	23320	EC GEN2	13.8	48.10	1	San Diego, El Cajon		Market
ELCAJN_6_UNITA1	22150	CALPK_EC	13.8	45.42	1	San Diego, El Cajon		Market
ELCAJN_7_GT1	22212	ELCAJNGT	12.5	16.00	1	San Diego, El Cajon		Market
ENCINA_7_EA1	22233	ENCINA 1	14.4	106.00	1	San Diego		Market
ENCINA_7_EA2	22234	ENCINA 2	14.4	104.00	1	San Diego		Market
ENCINA_7_EA3	22236	ENCINA 3	14.4	110.00	1	San Diego		Market
ENCINA_7_EA4	22240	ENCINA 4	22	300.00	1	San Diego		Market
ENCINA_7_EA5	22244	ENCINA 5	24	330.00	1	San Diego		Market
ENCINA_7_GT1	22248	ENCINAGT	12.5	14.50	1	San Diego		Market
ESCNDO_6_PL1X2	22257	ESGEN	13.8	35.50	1	San Diego		Market
ESCNDO_6_UNITB1	22153	CALPK_ES	13.8	48.04	1	San Diego		Market
ESCO_6_GLMQF	22332	GOALLINE	69	39.92	1	San Diego, Esco	Aug NQC	QF/Selfgen
KEARNY_7_KY1	22377	KEARNGT1	12.5	16.00	1	San Diego, Mission		Market
KEARNY_7_KY2	22373	KEARN2AB	12.5	15.02	1	San Diego, Mission		Market
KEARNY_7_KY2	22373	KEARN2AB	12.5	15.02	2	San Diego, Mission		Market
KEARNY_7_KY2	22374	KEARN2CD	12.5	15.02	1	San Diego, Mission		Market
KEARNY_7_KY2	22374	KEARN2CD	12.5	13.95	2	San Diego, Mission		Market
KEARNY_7_KY3	22375	KEARN3AB	12.5	14.98	1	San Diego, Mission		Market

KEARNY_7_KY3	22375	KEARN3AB	12.5	16.05	2	San Diego, Mission		Market
KEARNY_7_KY3	22376	KEARN3CD	12.5	14.98	1	San Diego, Mission		Market
KEARNY_7_KY3	22376	KEARN3CD	12.5	14.98	2	San Diego, Mission		Market
LAKHDG_6_UNIT 1	22625	LKHODG1	13.8	20.00	1	San Diego, Bernardo		Market
LARKSP_6_UNIT 1	22074	LRKSPBD1	13.8	46.00	1	San Diego		Market
LARKSP_6_UNIT 2	22075	LRKSPBD2	13.8	46.00	1	San Diego		Market
LAROA1_2_UNITA1	20187	LRP-U1	16	165	1	None		Market
LAROA2_2_UNITA1	22996	INTBST	18	157	1	None		Market
LAROA2_2_UNITA1	22997	INTBCT	16	165	1	None		Market
MRGT_6_MEF2	22487	MFE_MR2	13.8	47.90	1	San Diego, Mission, Miramar		Market
MRGT_6_MMAREF	22486	MFE_MR1	13.8	48.00	1	San Diego, Mission, Miramar		Market
MRGT_7_UNITS	22488	MIRAMRGT	12.5	18.55	1	San Diego, Mission, Miramar		Market
MRGT_7_UNITS	22488	MIRAMRGT	12.5	17.45	2	San Diego, Mission, Miramar		Market
MSHGTS_6_MMARLF	22448	MESAHGTS	69	3.19	1	San Diego, Mission	Aug NQC	QF/Selfgen
MSSION_2_QF	22496	MISSION	69	0.74	1	San Diego	Aug NQC	QF/Selfgen
NIMTG_6_NIQF	22576	NOISLMTR	69	35.59	1	San Diego	Aug NQC	QF/Selfgen
OGROVE_6_PL1X2	22628	PA99MWQ1	13.8	49.95	1	San Diego, Pala		Market
OGROVE_6_PL1X2	22629	PA99MWQ2	13.8	49.95	2	San Diego, Pala		Market
OTAY_6_PL1X2	22617	OYGEN	13.8	35.50	1	San Diego		Market
OTAY_6_UNITB1	22604	OTAY	69	2.80	1	San Diego	Aug NQC	QF/Selfgen
OTAY_7_UNITC1	22604	OTAY	69	2.65	3	San Diego	Aug NQC	QF/Selfgen
OTMESA_2_PL1X3	22605	OTAYMGT1	18	185.06	1	San Diego		Market
OTMESA_2_PL1X3	22606	OTAYMGT2	18	185.06	1	San Diego		Market
OTMESA_2_PL1X3	22607	OTAYMST1	16	233.48	1	San Diego		Market
PALOMR_2_PL1X3	22262	PEN_CT1	18	162.39	1	San Diego		Market
PALOMR_2_PL1X3	22263	PEN_CT2	18	162.39	1	San Diego		Market
PALOMR_2_PL1X3	22265	PEN_ST	18	240.83	1	San Diego		Market
PTLOMA_6_NTCCGN	22660	POINTLMA	69	1.65	2	San Diego	Aug NQC	QF/Selfgen
PTLOMA_6_NTCQF	22660	POINTLMA	69	16.70	1	San Diego	Aug NQC	QF/Selfgen
SAMPSN_6_KELCO1	22704	SAMPSON	12.5	0.72	1	San Diego	Aug NQC	QF/Selfgen
SMRCOS_6_UNIT 1	22724	SANMRCOS	69	0.47	1	San Diego	Aug NQC	QF/Selfgen
TERMEX_2_PL1X3	22981	IV GEN1	18	281	1	None		Market
TERMEX_2_PL1X3	22982	IV GEN2	18	156	1	None		Market
TERMEX_2_PL1X3	22983	IVGEN3	18	156	1	None		Market
NA	22444	MESA RIM	69	0.00	1	San Diego	No NQC - hist. data	QF/Selfgen
NA	22592	OLD TOWN	69	0.00	1	San Diego	No NQC - hist. data	QF/Selfgen
NA	22602	OMWD	69	0.00	1	San Diego	No NQC - hist. data	QF/Selfgen
NA	22708	SANLUSRY	69	0.00	1	San Diego	No NQC - hist. data	QF/Selfgen
NA	22916	PFC-AVC	0.6	0.00	1	San Diego	No NQC - hist. data	QF/Selfgen
LAKHDG_6_UNIT 2	22626	LKHODG2	13.8	20.00	2	San Diego, Bernardo	No NQC - Pmax	Market

Major new projects modeled:

- 1. Sunrise Power Link Project (Southern Route)
- 2. Eastgate Rose Canyon 69kV (TL6927) reconductor
- 3. New Imperial Valley-Dixieland 230 kV line
- 4. East County 500 kV substation (ECO)

Critical Contingency Analysis Summary

El Cajon Sub-area:

The most critical contingency for the El Cajon sub-area is the loss of the El Cajon-Jamacha 69 kV line (TL624) followed by the loss of Miguel-Granite-Los Coches 69 kV line (TL632), which would thermally overload the El Cajon – Los Coches 69 kV line (TL631). This limiting contingency establishes a LCR of 83 MW (including 0 MW of QF generation) in 2013 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency for this sub-area is the loss of Miguel-Granite-Los Coches 69 kV line (TL632) with El Cajon Energy Center already out of service, which would thermally overload the El Cajon – Los Coches 69 kV line (TL631). This limiting contingency establishes a LCR of 53 MW (including 0 MW of QF generation) in 2013.

Effectiveness factors:

All units within this sub-area (El Cajon Peaker, El Cajon GT and El Cajon Energy Center) have the same effectiveness factor.

Rose Canyon Sub-area

This sub-area has been eliminated due to TL6927, Eastgate-Rose Canyon 69 kV reconductor which is already in-service.

Mission Sub-area

The most critical contingency for the Mission sub-area is the loss of Mission - Kearny 69

kV line (TL663) followed by the loss of Mission – Mesa Heights 69kV line (TL676), which would thermally overload the Mission - Clairmont 69kV line (TL670). This limiting contingency establishes a local capacity need of 126 MW (including 3 MW of QF generation) in 2013 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

Miramar Energy Facility units and Miramar GTs (Cabrillo Power II) are 8% effective, Miramar Landfill unit and all Kearny peakers are 32% effective.

Bernardo Sub-area:

The most critical contingency for the Bernardo sub-area is the loss of Artesian - Sycamore 69 kV line followed by the loss of Poway-Rancho Carmel 69 kV line, which would thermally overload the Felicita Tap-Bernardo 69 kV line (TL689). This limiting contingency establishes a LCR of 110 MW (including 0 MW of QF generation and 70 MW of deficiency) in 2013 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this sub-area (Lake Hodges) are needed so there is no effectiveness factor required.

Esco Sub-area

The most critical contingency for the Esco sub-area is the loss of Poway-Pomerado 69 kV line (TL6913) followed by the loss of Esco - Escondido 69kV line (TL6908) which would thermally overload the Bernardo – Rancho Carmel 69 kV line (TL633). This limiting contingency establishes a LCR of 114 MW (including 40 MW of QF generation and 74 MW of deficiency) in 2013 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

Only unit within this sub-area (Goal line) is needed so no effectiveness factor is required.

Pala Sub-area

The most critical contingency for the Pala sub-area is the loss of Pendleton – San Luis Rey 69 kV line (TL6912) followed by the loss of Lilac - Pala 69kV line (TL6932) which would thermally overload the Melrose – Morro Hill Tap 69 kV line. This limiting contingency establishes a LCR of 43 MW (including 0 MW of QF generation) in 2013 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

All units within this sub-area (Orange Grove) have the same effectiveness factor.

Miramar Sub-area

The most critical contingency for the Miramar sub-area is the loss of Otay Mesa – Miguel Tap – Silvergate 230kV line (TL23042) followed by the loss of Sycamore 230/138 kV Bank #60, which would thermally overload the Sycamore - Scripps 69 kV line (TL6916). This limiting contingency establishes a LCR of 97 MW (including 0 MW of QF generation) in 2013 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency for this sub-area is the loss of Otay Mesa – Miguel Tap – Silvergate 230kV line (TL23042) with Miramar Energy Facility #1 or #2 out of service, which would thermally overload the Sycamore - Scripps 69 kV line (TL6916). This limiting contingency establishes a LCR of 86 MW (including 0 MW of QF generation) in 2013.

Effectiveness factors:

All units within this sub-area (Miramar Energy Facility and Miramar GTs) have the same effectiveness factor.

San Diego Sub-area:

The most limiting contingency for San Diego sub-area is the loss of Imperial Valley-Suncrest 500 kV line followed by the loss of ECO-Miguel 500 kV line. The limiting constraint is post-transient voltage instability. This contingency establishes a LCR of 2570 MW in 2013 (includes 151 MW of QF generation and 7 MW of Wind) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

The most limiting single contingency in the San Diego sub-area is a (G-1/N-1) contingency described by the outage of ECO-Miguel 500 kV line with Otay Mesa Combined-Cycle Power Plant (603 MW) already out of service. The limiting constraint is post-transient voltage instability. This contingency establishes a LCR of 2192 MW in 2013 (includes 151 MW of QF generation and 7 MW of Wind).

Effectiveness factors:

All units within this area have the same effectiveness factor. Units outside of this area are not effective.

San Diego Sub-area Requirements:

2013	QF	Wind	Market	Max. Qualifying
	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	151	7	2911	3069

2013	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) ²⁸	2192	0	2192
Category C (Multiple) ²⁹	2570	144	2714

_

A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

28 Multiple contingencies magneticated that the continuous con

²⁹ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

San Diego-Imperial Valley Area Overall:

The most limiting contingency in the San Diego-Imperial Valley area is described by the outage of 500 kV Southwest Power Link (SWPL) between Imperial Valley and N. Gila Substations over-lapping with an outage of the Otay Mesa Combined-Cycle Power plant (603 MW) while staying within the South of San Onofre (WECC Path 44) non-simultaneous import capability rating of 2,500 MW. This limiting contingency establishes a local capacity need of 2938 MW in 2013 (includes 151 MW of QF generation and 7 MW of Wind) as the minimum capacity necessary for reliable load serving capability within this area.

It is worth mentioning that Imperial Valley – Dixieland 230kV line was modeled between IID and CAISO. There were no additional upgrades modeled between CFE and CAISO control areas at Imperial Valley 230 kV bus in 2013 base case. The CAISO acknowledges that the LCR needs for the San Diego-Imperial Valley area will decrease as additional transmission is constructed between the IID/CFE systems and Imperial Valley and more power is flowing in real-time from these control areas into the CAISO control area.

Effectiveness factors:

All units within this area have the same effectiveness factor. Units outside of this area are not effective.

Changes compared to last year's results:

The load forecast went up by 270 MW and total local resource capacity needed for the San Diego-Imperial Valley increased by 89 MW overall due to a combination of factors.

Local capacity needs (Category C) for the San Diego sub-area decreased by 279 MW compared to last year mainly due to the WECC classification of Sunrise Power Link and South West Power Link as not being in the same corridor as well as elimination of WECC 1000 MW path rating on Sunrise Power Link. This shifted the most restrictive constraint to the larger area, however, resulting in an overall increase of 89 MW from the

2012 requirement but drawing on a larger pool of resources.

Overall the total LCR requirements (including deficiencies that cannot be contracted for due to unavailability of resources) have actually increased by 138 MW mainly due to the deficiency increase in the Bernardo and Esco sub-areas. It should be noted that further LCR deficiencies in the San Diego sub area are expected in later years due to the 2017 OTC compliance date for the Encina power plant and to the most restrictive contingency for this sub area limiting the pool of resources (qualifying capacity) effective in addressing the San Diego local area needs.

San Diego-Imperial Valley Area Overall Requirements:

2013	QF (MW)	Wind (MW)	Market (MW)	Max. Qualifying Capacity (MW)
Available generation	151	7	3991	4149

2013	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single)30	2938	0	2938
Category C (Multiple) ³¹	2938	144	3082

For stakeholder information only

Non-summer season LCR limited analysis

These results are for information purposes only and they will not be used to alter the 2013 LSE local resource allocation. The LSE local resource allocation is done based on the summer peak study as required by the ISO Tariff.

Extra assumptions as agreed upon by stakeholders:

- 1. One transmission element under maintenance conditions
- 2. Two resources under maintenance conditions

30

³⁰ A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

³¹ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.

Total 2013 busload within the defined area: 3800 MW with 71 MW of losses resulting in total load + losses of 3871 MW. This corresponds to a 1-in-10 peak for the month of October (highest among non-summer months).

San Diego Sub-area non-summer season:

Worst transmission element out on maintenance was considered to be one of the Imperial Valley-Suncrest, Imperial Valley-ECO or ECO-Miguel 500 kV lines.

The most limiting contingency for San Diego sub-area is the loss of Miguel - ECO 500 kV line with Otay Mesa out of service (Imperial Valley – Suncrest 500 kV line is out on maintenance). The limiting constraint is post-transient voltage instability. This contingency establishes a LCR of 1777 MW in 2013 (includes 151 MW of QF generation and 7 MW of Wind) as the minimum generation capacity necessary for reliable load serving capability within this sub-area in the non-summer season.

Under the current design all units with approved maintenance schedules are allowed to count towards the local requirement even when they are out of service. Maintaining these assumptions the "two units out on maintenance" can make up anywhere from 30 to 1169 MW for an average of 500-600 MW. The total local resources in the greater San Diego sub-area under an RA contract in the non-summer season should be therefore around 2277-2377 MW, a level 200-300 MW lower than the summer peak need.

San Diego-Imperial Valley Area Overall non-summer season:

Worst transmission element out on maintenance was considered to be one of the five 230 kV lines that comprise the South of SONGS path. This will reduce the import capability of South of SONGS from 2500 MW to about 1650 MW.

The most limiting contingency in the San Diego-Imperial Valley area is described by the outage of 500 kV Southwest Power Link (SWPL) between Imperial Valley and N. Gila Substations over-lapping with an outage of the Otay Mesa Combined-Cycle Power plant

(603 MW) while staying within the South of San Onofre (WECC Path 44) non-simultaneous import capability of 1,650 MW (after one element out for maintenance). This limiting contingency establishes a local capacity need of 2498 MW in 2013 (includes 151 MW of QF generation and 7 MW of Wind) as the minimum capacity necessary for reliable load serving capability within this area in the non-summer season.

Under the current design all units with approved maintenance schedules are allowed to count towards the local requirement even when they are out of service. Maintaining these assumptions the "two units out on maintenance" can make up anywhere from 30 to 1197 MW for an average of 500-600 MW. The total local resources in the greater San Diego-Imperial Valley area under an RA contract in the non-summer season should be therefore around 2998-3098 MW, a level 200-300 MW higher than the summer peak need.

11. Valley Electric Area

Area Definition

The transmission tie lines into the area include:

- 1) Amargosa-Sandy 138 kV line
- 2) Jackass Flats-Lathrop Switch 138 kV line
- 3) Sloan Canyon-Pahrump 230 kV line
- 4) Desert View-Pahrump 230 kV line

The substations that delineate the area are:

- 1) Amargosa is out Sandy is in
- 2) Jackass Flats is out Lathrop Switch is in
- 3) Sloan Canyon is out Pahrump is in
- 4) Desert View is out Pahrump is in

Total 2013 busload within the defined area was: 119 MW along with 2 MW of transmission losses resulting in total load + losses of 121 MW.

There is no generation and qualifying capacity available in this area.

Major new transmission projects modeled:

 Northwest-Desert View 230 kV Line #1 (under construction, be in service before the summer of 2013)

<u>Critical Contingency Analysis Summary</u>

Pahrump South Sub-Area

The most critical contingency for the Pahrump South Sub-Area is the loss of Pahrump-Gamebird 138 kV line with the biggest resource in the area out of service (estimated at a minimum of 7 MW). This contingency results in voltage lower than 0.90 pu at Gamebird sub (0.89 pu), Thousandaire sub (0.89 pu), and Charleston sub (0.89 pu), and establishes a local capacity need of 7 MW plus the biggest resource in the area (estimated at 7 MW) or a total of 14 MW (includes 14 MW of deficiency) in 2013 as the minimum capacity necessary for reliable load serving capability within this sub-area.

Effectiveness factors:

There is no generation available in this sub-area.

Valley Electric Association Overall Area

The most critical contingency for the Valley Electric Association Area is the loss of Mead-Sloan Canyon 230 kV line followed by the loss of Northwest-Desert View 230 kV line or vice versa. This double contingency event may result in voltage collapse in the Valley Electric Association area, and establishes a local capacity need of 37 MW (including 37 MW of deficiency) in 2013 as the minimum capacity necessary for reliable load serving capability within the area. An SPS to drop load for this N-2 could eliminate this overall local capacity need.

Effectiveness factors:

There is no generation available in this area.

Changes compared to last year's results:

There is no comparison to last year's results since this is first year to establish local capacity requirement for the Valley Electric Area.

Valley Electric Area Overall Requirements:

2013	QF/Selfgen	Muni	Market	Max. Qualifying
	(MW)	(MW)	(MW)	Capacity (MW)
Available generation	0	0	0	0

2013	Existing Generation Capacity Needed (MW)	Deficiency (MW)	Total MW LCR Need
Category B (Single) 32	0	14	14
Category C (Multiple) ³³	0	37	37

-

A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared — for the next contingency as required by NERC transmission operations standards.

33 Multiple contingencies means that the same will be able the survive the loss of a single element, however the loss of a single element, however the operators will not have any means that the same will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared — for the next contingency as required by NERC transmission operations standards.

³³ Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by NERC transmission operations standards.