Appendix A

Workshop Materials August 20, 2012

The following application priorities and definitions are based on informal input/discussion between CPUC Staff, CESA, SCE, PGE, SDGE on April 12, 2012 and refined May 11, 2012. They are for discussion purposes only; the numbering is not in order of priority.

Basis for Prioritization

- 1. Magnitude of direct benefits to utilities, end users
- 2. Magnitude of societal benefits, including emissions reductions, market development, system flexibility etc.
- 3. Renewables integration (key California policy priority)
- 4. Fit with CPUC jurisdictional control
- 5. Availability of commercially ready energy storage technologies
- 6. Ability to be deployed quickly and achieve 'quick wins'

Key Definitions to Standardize in our Language:

- 1. <u>Benefit</u> = a single value or revenue stream captured by a resource. A stream of benefits comes from solving the identified problem and providing additional end-uses that result in providing value or capturing revenue. The cost-benefits for different solutions should be evaluated separately and the net benefits should be compared.
- 2. End Use = 'operational use (SCE)' = specific targeted operational use for a resource in the field, may result in capture of one or more

DRAFT Application Priorities – Matrix

benefits.

- 3. <u>Application</u> = combination of end uses (and benefits) that an energy storage system may capture when sited at a specific place and managed in a particular way (consistent with SCE and CESA's definition)
- 4. <u>Use-Cases</u> = specific and detailed application w/ location, technology, operating regime, etc. A document that describes a problem being solved by a particular storage system in a particular location with a clear operating regime, funding structure, governance, etc.

New Terms that Need Definitions

- 1. <u>Bulk Storage</u> large-scale energy storage that is interconnected to the grid at transmission-level voltage, and is used primarily for electric supply capacity. Can be generator co-located (storage onsite combustion turbines) or stand alone (CAES, pumped hydro) or aggregated (large-scale aggregated battery storage interconnected at transmission level).
- 2. <u>Generation-Sited Storage</u> category of energy storage solutions that are co-located with large-scale generation (vs. distributed generation). Includes molten salt (co-located with concentrated solar thermal) and storage co-located with natural gas combustion turbines.
- 3. <u>Operational Considerations</u> Description of how a storage project is used; i.e., on a defined basis, what application is it being employed for; what resource solution is it providing, who is deciding, etc..
- 4. <u>Multi-Function Analysis</u> A storage project may at different times operate as a Generation, Transmission, Distribution or Load resource. This functionality determines the jurisdictional authority that governs its markets or terms of use; i.e., FERC/transmission, CPUC/distribution.

#	Application (use case)	Description/ Problem	Potential Compensation	Likely Siting & Scale (C x hr)	Storage Solution	Conventional Solutions or	Energy Storage Case Study
		Solving	or Ownership			Alternatives	Example
1	Distribution	Defers	Utility	At or down-	Upgrade	Upgrade wires	• SDG&E

DRAFT Application Priorities - Matrix

capacity (for 1-4 years)		Storage		Ratebased Third party End User	stream from overloaded equipment • Substation • Circuit > 1 MW x 4 hrs	Deferral* Replacement Deferral* Equipment life extension Service reliability T&D congestion Transportabilit	or transformers.	primary distribution storage (batteries)
--------------------------	--	---------	--	--------------------------------	---	---	---------------------	---

Operational considerations: Will operate on a scheduled basis (load modifier) **OR** maintains a prescribed level of charge and responds automatically to improve operational reliability (voltage support, etc).

DRAFT Application Priorities - Matrix

#	Application (use case)	Description/ Problem Solving	Potential Compensat ion or	Likely Siting	Primary End Uses	Conventional Solutions or Alternatives	Energy Storage Case Study
			Ownership				Example
2	Community Energy Storage [@]	Improve local service reliability. Integration of distributed VREs Voltage control	 Utility Ratebased Third Party under contract 	Adjacent to loads, on utility 'easement' >25 kW x 2 hr	 Service Reliability* D Deferral* T Congestion* Electric Supply* Ancillary Services* Transportabilit y 	CapacitorTransformer	 AEP CES Detroit Edison CES SMUD Solar Smart RES/CES Project SDG&E secondary storage projects

Operational considerations: Will operate on a scheduled basis (load shift) **OR** on an automated basis (power quality / operational reliability) depending on the nature of the problem to be solved [**OR** Bid into ISO markets; operate according to awards and ISO dispatch signal]

#	Application (use case)	Description/ Problem Solving	Likely Compensatio n or Ownership	Likely Siting	Primary End Uses	Conventional Solutions or Alternatives	Energy Storage Case Study Example
3	Distributed	Energy cycling	 Utility 	 Subtransmission 	• Electric Supply*	 Conventional 	 Modesto

DRAFT Application Priorities - Matrix

Peaker [@]	to address	Ratebased	Substation	Ancillary	Generation (CT,	Irrigation
	peaking needs			Services*	<i>CC</i>)	District
(Load	(part year	 Third Party 		• T Congestion*	• PPA	Raleigh, NC
Modifier	operated by	ownership,			• DR	(TAS Energy)
primarily in	utility,	PPA		• Service	• Critical Peak	
lieu of added	part year		>25 MW x 4 hr	Reliability*	Pricing (CPP)	
electric	operated by			• D Deferral*	• EE	
supply	CAISO)			Transportabilit	TES	
capacity)				V		
				,		

Operational considerations: Bid into ISO markets; operate according to awards and ISO dispatch signal **OR** Operate on a scheduled basis (load shift) **OR** on an automated basis (power quality / operational reliability).

The unit is operated as a traditional generation resource bidding into the market; thus the unit is *not* operated to meet local reliability needs. The "potential additional" benefits are the cost savings resulting from proximity to load, thus avoided some congestion charges and line losses.

	Application	Description/	Potential	Likely Siting	Primary End	Conventional	Energy Storage
	(use case)	Problem	Compensatio		Uses	Solutions or	Case Study
		Solving	n or			Alternatives	Example
			Ownership				
4	VER-sited	On-site firming	• Expensed	At or near RE	Variable RE	 Additional 	• Xtreme Power -
	(renewables)	or shaping of	by LSE (if	Generation	Generation	Sub-T or D	various
		intermittent	third party	✓ Subtransmission	Integration	Infrastructure	Solar Thermal
		generation	owns and	✓ Substation	✓ energy time-	 Static VAR 	with molten
			sells higher	✓ Distribution	shift	Compensator	salt or other
			value		✓ capacity-	 Switched 	• TAS
			power to		firming	Capacitor	Generation
			LSE)	35 MW – 250 MW	√ ramping	Banks	Storage™
			Ratebased		✓ Volt/VAR	Generation	• Laurel Mtn

DRAFT Application Priorities - Matrix

(If IOU	support	storage	AES
owns and		technologies	
pairs with			
generation)			

Operational Considerations: Dispatch coordinated to smooth VER output to avoid future integration charges. **OR** Bid into ISO markets; operate according to awards and ISO dispatch signal.

This application is distinct from the [Bulk] Generation application only when the storage device is integrated in to the VER itself, such as solar thermal coupled with thermal storage. Otherwise, there is no need for the storage device to be co-located with the VER as opposed to at a transmission substation. There could *potentially* be additional value if the storage device was able to reduce or avoid an investment to increase the transmission capacity necessary to accommodate the VER, but this would be a FERC-jurisdictional benefit.

#	Application (use case)	Description/ Problem Solving	Potential Compensatio n or Ownership	Likely Siting	Primary End Uses	Conventional Solutions	Energy Storage Case Study Example
5	Bulk Generation/ Storage	Electric Supply Capacity/ provides resource adequacy, ancillary services, and energy	MarketUtility RatebasingThird Party	TransmissionGenerator colocated>100 MW x 6 hr	Resource adequacyAncillary servicesEnergy	 Conventional Generation (CT, CC) PPA DR 	 Utility-owned Pumped Hydro- electric Alabama CAES TAS Energy Generation Storage™ Case

DRAFT Application Priorities - Matrix

_		1	1	
				C4 J
				Study
				1

Operational considerations: While this application is conceived as large scale storage, the C/E template would be the same for a much smaller device so long as that device is interconnected at the transmission level and intended to earn revenues through markets exclusively.

#	Application (use case)	Description/ Problem Solving	Likely Compensatio n or Ownership	Likely Siting	Primary End Uses	Conventional Solutions or Alternatives	Energy Storage Case Study Example
6	Demand Side Manage- ment	End-use Customer Bill Management System load modification Service Reliability/ Quality	 Customer Market (for ancillary services) End-user Third-party Utility Ownership? 	Customer-side of Meter	 TOU Energy Cost Management Demand Charge Management Reliability (back-up power) Power Quality Ancillary Services * 	 Energy Efficiency Combined Heat and Power (CHP) Combined Cooling Heat and Power (CCHP) 	 Alameda County Santa Rita Jail Various SGIP funded projects TES Tesla/Solar City?

DRAFT

Application Priorities - Matrix

Operational considerations: Operated to minimize customer energy and demand charges, potentially responding to price signals sent by utility; potentially providing backup power in an outages if outage occurs when battery happens to be charged

Notes

*Heavily loaded transformers and underground cables with slow or no load growth.

*Responds to utility and/or ISO signals.

[®]Includes resource adequacy in the form of supply capacity and reserves.