Docket:	:	<u>R.12-03-014</u>
Exhibit Number	:	
Commissioner	:	Michel Peter Florio
Admin. Law Judge	:	David M. Gamson
DRA Witnesses	:	Robert M. Fagan
		-

DIVISION OF RATEPAYER ADVOCATES CALIFORNIA PUBLIC UTILITIES COMMISSION

AMENDED TESTIMONY OF ROBERT M. FAGAN

Order Instituting Rulemaking to Integrate and Refine Procurement Policies and Consider Long-Term Procurement Plans

(R.12-03-014)

San Francisco, California August 8, 2012 1 2 MW, a reduction of more than 40% of otherwise needed OTC resources (or their equivalent). This reduction also excludes the contribution that demand response resources can make to further lower OTC resource needs.

3

4 I estimate a resource surplus for both the overall LA Basin local area and the 5 BC/Ventura local areas based on information from CAISO's OTC studies, and recent 6 demand-side assumptions for the SCE portion of these local areas. I assumed retirement 7 of the existing OTC units in CAISO's LA Basin area (4,740-4,940MW total, at El 8 Segundo, Huntington Beach, Redondo Beach, and Alamitos generating stations). I 9 assumed commercial operation of repowered units at El Segundo, Walnut Creek, and 10 Sentinel peaking resources. I assumed retirement of the Ormond Beach and Mandalay 11 stations in the BC/Ventura area. I used an estimate of demand response (DR) resources 12 from SCE's 2011 Demand Response Load Impact Evaluations Portfolio Summary, 13 prepared by Freeman, Sullivan & Co. on May 30, 2012. After accounting for these resources and using current CEC mid-case estimates of uncommitted energy efficiency 14 (EE) as reported at the DAWG¹ meeting in June 2012, I find a resource surplus of 845 15 MW exists in the LA Basin in 2020, declining to a surplus of 489 MW by 2022I estimate 16 a 1,820 MW surplus in the overall BC/Ventura area in 2020. Due to data limitations², 17 18 and concern over the extent to which sub-area configurations in 2012/13 will be the same 19 as those in place in 2020, my analysis does not at this time address potential sub-area 20 LCR needs. I use a load and resource balance approach to calculate the overall LCR area 21 values.

I note that my analyses focus on the resource deficiency/surplus issue; CAISO focuses on both LCR need, and estimates of "OTC need". The analyses are not directly comparable for two reasons: i) CAISO indicates that any resource can contribute to meeting this need, and I specifically include resources in my assessment in an attempt to gauge net resource needs, and ii) I don't attempt to analyze LCR sub-areas, as additional detail is required for this assessment. For

3

¹ Demand Analysis Working Group.

 $^{^{2}}$ The CAISO testimony and the CAISO transmission plan contain limited detail on sub-areas, and the resource screening tool provided by CAISO does not provide sub-area breakdowns.

1 Table RF-2. Range of Resource "Deficiency" or "Sur plus", LA Basin Local Area, 2012-2022

CA Dasii	toveran ECK Scenario based on May 51 201820 E0ad 1 0120ast, 50	2040	2042	, OAISO I	2046	2046	00 LA Da	2040	2040	2020	90.04	2022
Kow		2012	2013	2014	2015	2010	2017	2018	2019	2020	2021	2022
	Gross peak load LA Basin LCR Area 1 in 10 (CEC	10.074	20 452	20.000	21 000	04 200	01 644	01 0 1 2	22.202	22.402	00 770	22.060
A		19,974	20,452	20,000	21,000	21,302	21,044	21,913	22,202	22,492	22,110	23,060
-	Uncommitted EE (6/18/2012 DAVVG Mid-case SCE /	-	~~	450	004	44.4	540	500	700	04.4	000	005
В		5	60	156	294	414	516	593	708	814	906	990
0	Uncommitted EE rest of CAISO LA Basin utilities (es			•	47				40	40	F 4	50
C	at 50% of SCE's emort, proportionate to peak load	0	4	9	1/	24	30	34	40	46	51	56
ע	Net peak load (gross peak minus uncommitted EE), with $(A - B - C)$	19,969	20,380	20,639	20,769	20,944	21,096	21,287	21,454	21,632	21,821	22,009
	Transmission import MW/ (CAISO OTC analysis En											
-	Case. Tabashani addiitian in 2015)	10 500	10 500	10 500	11 500	11 500	11 500	11 500	11 500	11 500	11 500	14 500
E	Crase, Lenachapi addition in 2015)	10,592	0 7 9 2	10,592	0 177	0.252	0.504	0.605	0.962	10.040	10,000	10,417
r	Gloss LA Basin need before demand response, Nivy (BE)	9,377	9,700	10,047	9,177	9,302	9,304	9,690	9,002	10,040	10,229	10,417
C	Demand response reduction (SCE Load Impact Final Prot LA Basin %	1 260	1 / 35	1 547	1 550	1 550	1 550	1 550	1 550	1 550	1 550	1 550
Ч	Net I A Basin area supply need after DR resourcesF - G)	8 117	8 353	8 500	7 627	7 802	7 954	8 144	8 311	8 490	8,678	8 867
		0,117	0,000	0,000	1,021	7,002	1,004	0,177	0,011	0,400	0,070	0,007
1	Existing supply (CAISO LA Basin, 2012 NOC, n 228hr, supply side CH	12 083	12 083	12 083	12 083	12 083	12 083	12 083	12 083	12 083	12 083	12 083
		,			12,000			,	12,000	,	,	12,000
	Retirement path: Alamitos 2.010 MW									(2.010)	(2.010)	(2.010)
	Retirement path: Huntington Beach 904 MW		(452)	(452)	(452)	(452)	(452)	(452)	(452)	(904)	(904)	(904)
	Retirement path : El Segundo 670 MW		(335)	(335)	(670)	(670)	(670)	(670)	(670)	(670)	(670)	(670)
	Retirement path: Redondo Beach 1,356 MW		`		<u>_</u>	·······	、	······································		(1,356)	(1,356)	(1,356
J	OTC Total Retirements (Siao, implemention plans, 55 4,940 MW	-	(787)	(787)	(1,122)	(1,122)	(1,122)	(1,122)	(1,122)	(4,940)	(4,940)	(4,940)
							A					
	El Segundo repower (unit 3 credits 2013, unit 4 cr e its 2017)		280	280	280	280	560	560	560	560	560	560
	Walnut Creek (Huntington Beach credits)		500	500	500	500	500	500	500	500	500	500
	Sentinel CPV		850	850	850	850	850	850	850	850	850	850
	Total estimated Fossil Resources (El Segundo, Waltu									C.		
K	Creek, Sentinel), Known Hi-Probability Additior		1,630	1,630	1,630	1,630	1,910	1,910	1,910	1,910	1,910	1,910
L	New RPS in LA Basin											
М	New CHP in LA Basin (SCE Base, Yakov testimony fro ICF report)	45	68	90	113	147	180	214	248	282	292	303
N	Total net supply (I + J + K + L + M)	12,128	12,994	13,016	12,704	12,738	13,051	13,085	13,119	9,335	9,345	9,356
0	Balance: Base Need (+ is surplus - is deficiency)N - H)		4 641	4 517	5 077	4 936	5 097	4 941	4 808	845	667	489

2

3

18