Energy Storage Phase 2 Workshop August 20, 2012

Arthur O'Donnell -- Regulatory Analyst Aloke Gupta – Regulatory Analyst Grid Planning and Reliability Energy Division California Public Utilities Commission

Meeting Goal and Agenda

Goal: To open discussion of Phase 2 issues, present a plan of analysis, and to consider a proposed schedule which can be presented to the ALJ during the September 4 PHC.

Action Item	Time Alotted	Clock
Introductions	15 minutes	9:30 a m – 9:45 am
Review Proceeding	15 minutes	9:45 am – 10:00 am
Phase 2 Considerations	60 minutes	10:00 am – 11:00 am
Matrix and Use Case Templates	75 minutes	11:00 am – 12:15 pm
Lunch	75 minutes	12:15 pm – 1:30 pm
Scoping Issues	75 minutes	1:30 pm – 2:45 pm
Scheduling	45 minutes	2:45 pm – 3:30 pm
Wrap-Up	15 minutes	3:30 pm – 3:45 pm

CPUC OIR R10-12-007

Responsive to AB 2514, which requires the CPUC:

- 1. To open a proceeding to determine appropriate targets, if any, for each load-serving entity to procure viable and cost-effective energy storage systems.
- By October 1, 2013, to adopt an energy storage procurement target, if determined to be appropriate, to be achieved by each LSE by December 31, 2015, and a 2nd target to be achieved by December 31, 2020.
- 3. "[T]he commission may consider a variety of possible policies to encourage the cost-effective deployment of energy storage systems, including refinement of existing procurement methods to properly value energy storage systems."

Status of Energy Storage OIR

Barriers to Energy Storage

The barriers to Energy Storage deployment have been summarized into the following key areas:

- 1. Lack of definitive operational needs
- 2. Lack of cohesive regulatory framework
- 3. Evolving markets and market product definition
- 4. Resource Adequacy accounting
- 5. Lack of cost-effectiveness evaluation methods
- 6. Lack of cost recovery policy
- 7. Lack of cost transparency and price signals (wholesale and retail)
- 8. Lack of commercial operating experience
- 9. Lack of well-defined interconnection process

Storage "End Use" Framework

Category	Storage "End Use"
ISO/Market	 Ancillary services: frequency regulation Ancillary services: spin/non-spin/replacement reserves Ancillary services: ramp Black start Real time energy balancing Energy price arbitrage Resource adequacy
Generation	 Intermittent resource integration: wind (ramp/voltage support) Intermittent resource integration: photovoltaic (time shift, voltage sag, rapid demand support) Supply firming
Transmission/ Distribution	 Peak shaving: off-to-on peak energy shifting (operational) Transmission peak capacity support (upgrade deferral) Transmission operation (short duration performance, inertia, system reliability) Transmission congestion relief Distribution peak capacity support (upgrade deferral) Distribution operation (Voltage Support/VAR Support) Outage mitigation: micro-grid
Customer	 Time-of-use (TOU) energy cost management Power quality Back-up power

Phase 2 Scoping Issues For Consideration

- Cost-Effectiveness
- Market Needs Analysis
- Barriers Analysis
- Impacts of Ownership Models
- Coordination with Other Proceedings LTPP and RA
- Procurement Targets or Other Policies
- Defining Long-Term Roadmap

Key Terms

- Energy Storage System As defined in AB 2514 and D. 12-08-016: "[C]ommercially available technology that is capable of absorbing energy, storing it for a period of time, and thereafter dispatching the energy..."
- **Benefit** A single value or revenue stream captured by a resource.
- End Use Specific targeted operational use of a resource in the field.
- **Application** A combination of end uses (and benefits that a storage system may capture when sited and managed in a particular way.
- Use Case A document that describes a problem being solved by a particular storage system.
- **Priority Scenarios** A broad set of possible applications that respond to a public policy determination or priority.

What is a Use Case?

- A Use Case is a document that illustrates the context of where and how storage can be used on the electric grid, thus promoting clearer analysis and decision-making.
- The purpose of describing Use Cases is NOT to fully specify the precise details of the storage project and their relevant technologies (i.e., specifications, project design, financing).
- Use Cases define goals and purpose: the problems we are trying to solve. Establishing these goals lays the foundation for the scope of analysis that will follow.

Elements of Energy Storage Use Cases

- 1. Overview Section
- 2. Use Case Description
- 3. Cost/Benefit Analysis
- 4. Barriers Analysis & Policy Options
- 5. Real World Example
- 6. Conclusion and Recommendations

Analysis of Energy Storage Use Cases

- Commercial readiness
- Operational viability
- Benefit streams
 - Benefits monetize through existing markets/mechanisms
 - If not, how should they be valued?
- Cost-effectiveness
- Most important barriers preventing /slowing deployment of ES
- Policy options to address identified barriers
- Consider procurement target or other policies to encourage ES

Prioritized Scenarios/Use Cases

Scenario/Use Case

Generator-sited Storage

- Co-located with VER
- Co-located with Conventional Gen
- Co-located with Wholesale DG
- Bulk "Generation"
 - Storage as "Peaker"
 - Ancillary Services

• Distributed Storage

- Distributed Peaker
- Distribution Storage
- Community Energy Storage

Demand-Side Management

- Permanent load shift
- On-site renewables with storage

Primary End Use

Renewables integration Peaking capacity Renewables integration

Ancillary Services/Capacity/Energy Ancillary Services

Energy cycling to meet peak Defer upgrades Local service reliability

End-use bill management

Variable Energy Resource -- Generation Sited

Purpose	On-site firming or shaping variable energy; ramping; voltage support
Location	With or near renewable energy generation, or elsewhere
Technology	Centralized Solar Power w/molten salt or other; generation sited thermal storage; batteries: >25 MW, >5 hours
Example	AES Laurel Mountain Li-ion battery: 32 MW (to back up 98 MW wind farm) BrightSource CSP with molten salt, 3 units, 200 MW, 6 hours

http://www.brightsourceenergy.com/energy-storage

VER Generation Sited

Application (use case)	Description/ Problem Solving	Potential Compensation or Ownership	Likely Siting	Primary End Uses	Conventional Solutions or Alternatives	Energy Storage Case Study Example
4 VER-sited (renewables)	On-site firming or shaping of intermittent generation	 Expensed by LSE (if third party owns and sells higher value power to LSE) Ratebased (If IOU owns and pairs with generation) 	 At or near RE Generation Subtransmission Substation Distribution 35 MW – 250 MW 	 Variable RE Generation Integration energy time- shift capacity- firming ramping Volt/VAR support 	 Additional Sub T or D Infrastructure Static VAR Compensator Switched Capacitor Banks Generation storage technologies 	 Xtreme Power - various Solar Thermal with molten salt or other TAS Generation Storage™ Laurel Mtn AES

Bulk Generation

- Purpose Capacity, energy and ancillary services
- Location at generator site or on transmission grid
- Technology Hydro pumped storage, CAES, generation-sited thermal storage: >50 MW, 6 hours
- ExampleTAS Energy turbine inlet cooling with storage45 MW incremental capacity on a 300 MW CCGT

Bulk Generation

#	Application (use case)	Description/ Problem Solving	Potential Compensation or Ownership	Likely Siting	Primary End Uses	Conventional Solutions or Alternatives	Energy Storage Case Study Example
5	Bulk Generation/ Storage	Electric Supply Capacity/ provides resource adequacy, ancillary services, and energy	 Market Utility Ratebasing Third Party 	 Transmission Generator co- located >100 MW x 6 hr 	 Resource adequacy Ancillary services Energy 	 Conventional Generation (CT, CC) PPA DR 	 Utility-owned Pumped Hydro- electric Alabama CAES TAS Energy Generation Storage™

Distributed Peaker

Purpose	Energy cycling to meet peak load requirements and ancillary services
Location	Sub-transmission level or at substation
Technology	Large batteries, compressed air, or turbine inlet cooling/thermal storage: >25 MW, >3 hours
Example	Modesto Irrigation District/Primus Power Flow battery: 25 MW/75 MWh

http://www.smartgrid.gov/sites/default/files/primus-power-oe0000228-final.pdf

Distributed Peaker

#	Application (use case)	Description/ Problem Solving	Likely Compensation or Ownership	Likely Siting	Primary End Uses	Conventional Solutions or Alternatives	Energy Storage Case Study Example
3	Distributed Peaker	Energy cycling to address peaking needs	 Utility Ratebased 	SubtransmissionSubstation	 Electric Supply Ancillary Services 	 Conventional Generation (CT, CC) 	 Modesto Irrigation District
	(Load Modifier primarily in lieu of added electric supply capacity)	(part year operated by utility, part year operated by CAISO)	 Third Party ownershipP PA 	>25 MW x 4 hr	T Congestion Service Reliability Dist Deferral Transportability	 PPA DR Critical Peak Pricing (CPP) TES 	 Raleigh, NC (TAS Energy) District Energy

Distribution Storage

Purpose	Defers distribution upgrades for 1 to 4 years
Location	Substation or downstream from overloaded equipment
Technology	Batteries: >1 MW, 4 hours discharge
Example	SDG&E Borrego Springs substation-level Li-ion battery: 500 kW/1,500 kWh

http://events.energetics.com/SmartGridPeerReview2010/pdfs/presentations/day2/am/12_SDG_E_Borrego_Springs_Microgrid_NEW.pdf

Distribution Storage

#	Application (use case)	Description/ Problem Solving	Potential Compensation or Ownership	Likely Siting & Scale (C x hr)	Storage Solution	Conventional Solutions or Alternatives	Energy Storage Case Study Example
1	Distribution Storage	Defers distribution upgrades. (For Example: overloaded wire, transformers, capacitor – not a load modifier!) Use energy	 Utility Ratebased Third party End User 	 At or down- stream from overloaded equipment Substation Circuit 1 MW x 4 hrs 	 Upgrade Deferral* Replacement Deferral* Equipment life extension Service reliability T&D congestion 	 Upgrade wires or transformers. 	 SDG&E primary distribution storage (batteries)
		sub transmission capacity (for 1-4 years)			• Transportabilit y		

Community Energy Storage

Purpose	Improve local reliability; integrate distributed renewable generation; provide voltage control	AMI/Broadband Internet
Location Technology	Adjacent to load, on utility or customer property Batteries: >25 kW, 2 hours	Remote Utility Interface DC to AC Inverter AkW AC to DC Programmable Battery Charger Measurement DC to AC Inverter
Example	SMUD "Smart Solar" in Anatolia neighborhood. Li-ion batteries: 15 units, 8.7 kW/8.8 kWh (residential) 3 units, 30 kW/kWh (pad-mount transformers, distribution	Battery Compartment
	teeders)	Posidential Energy Storage

Residential Energy Storage http://www.advancedenergy.org

Community Energy Storage

# Application (use case)	Description/ Problem Solving	Potential Compensatic n or Ownership	Likely Siting	Primary End Use	s Conventional Solutions or Alternatives	Energy Storage Case Study Example
2 Community Energy Storage	Improve local service reliability. Integration of distributed VREs Voltage control	 Utility Ratebased Third Party under contract 	 Adjacent to loads, on utility 'easement' >25 kW x 2 hr 	 Service Reliability* D Deferral* T Congestion* Electric Supply Ancillary Services* Transportability 	Capacitor Transformer *	 AEP CES Detroit Edison CES SMUD Solar Smart RES/CES Project SDG&E secondary storage projects

Demand-Side Management

Purpose	Peak shaving/load shifting; customer bill management; reliability
Location	customer site or district energy facility
Technology	batteries, thermal energy storage
Example	Santa Rita Jail microgrid Li-ion battery: 2 MW/4 MWh backup for wind, fuel cell generation Tesla-Solar City. Li-Ion battery to support rooftop PVs Ice Energy, thermal energy storage cooling

http://www.ice-energy.com

http://www.solarcity.com

Demand-Side Management

#	Application (use case)	Description/ Problem Solving	Likely Compensation or Ownership	Likely Siting	Primary End Uses	Conventional Solutions or Alternatives	Energy Storage Case Study Example
6	Demand Side Manage- ment	End-use Customer Bill Management System load modification Service Reliability/ Quality	 Customer Market (for ancillary services) End-user Third-party Utility Ownership? 	• Customer-sid øf Meter	 TOU Energy Cost Management Demand Charge Management Reliability (bacl up power) Power Quality Ancillary Services * 	 Energy Efficiency Combined Heat and Power (CHP) Combined Cooling Heat and Power (CCHP) 	 Alameda County Santa Rita Jail Various SGIP funded projects TES Tesla/Solar City?

Phase 2 Scoping Issues For Discussion

- Cost-Effectiveness
- Market Needs Analysis
- Barriers Analysis
- Coordination with Other Proceedings LTPP and RA
- Impacts of Ownership Models
- Procurement Targets or Other Policies
- Defining Long-Term Roadmap

Proposed Schedule 2012

- August 20
- September 4
- September 7
- September 24
- September ??
- October 8-9
- Oct.-Nov.
- December 20

Workshop, CPUC Auditorium.

PHC Phase 2.

Joint Storage/LTPP workshop on flexibility characteristics.

Workshop on cost-effectiveness tools.

Scoping memo for Phase 2.

Workshops on Use Case development.

Working Groups to develop Use Cases.

Staff Report on Use Cases.

Proposed Schedule 2013

- January 25 Parties comment on Staff Report, propose specific Storage Applications that should be considered for utility portfolios. Identify how Barriers relate or may be addressed in this or other Proceedings.
- February 5 Reply comments.
- March-April Evidentiary Hearings or Workshops on Procurement Targets, Policy Options and Roadmap Issues.
- May 1 Staff recommendations to ALJ.
- August ALJ PD on Phase 2 issues; determination if Procurement will be ordered and how it should be conducted or other alternative Policy approaches.
 September Commission consideration of PD.
- Dec. 31 Report to Legislature on outcome of Proceeding.

- Identify Work Groups to Develop Use Cases
- Upcoming Workshops:
 - Sept. 4, Pre-hearing Conference
 - Sept. 7, Joint workshop with LTPP on flexibility and procurement options
 - Sept. 24 Workshop on Cost-Effectiveness Models
 - Oct. 8-9 Workshops on Use Case development

Thank you!

For further information related to R.10-12-007 please contact :

Arthur O'Donnell ao1@cpuc.ca.gov

415-703-1184

Aloke Gupta AG2@cpuc.ca.gov 415-703-5239

