

Permanent Load Shifting

Author:

Ben Williams, Samsung Energy, +1-847-407-2856, Ben.williams@samsung.com

Contributors:
Sami Mardini, Director of Product Marketing, EnerVault Corporation, +1 626 318 2646,
smardini@enervault.com

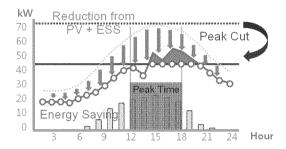
Terry Andrews, Calmac, +1-480-659-4977, TAndrews@calmac.com

1.	1. Overview Section				
2.	Use Case Description				
	2.1	Objectives	68		
	2.2	Actors	69		
	2.3	Proceedings and Rules that Govern Procurement Policies and Markets for This			
		Use	69		
	2.4	Location	69		
	2.5	Operational Requirements	69		
	2.6	Applicable Storage Technologies	70		
	2.7	Non-Storage Alternatives for Addressing this Objective	70		
3.	Cost/Benefit Analysis				
	3.1	Direct Benefits	71		
	3.2	Other Beneficial Attributes	72		
	3.3	Costs	72		
	3.4	Cost-effectiveness Considerations	72		
4.	Barr	iers Analysis & Policy Options	72		
	4.1	Barrier Resolution	72		
	4.2	Other Considerations	73		
5.	Real	World Example	73		
	5.1	Project Description	73		
	5.2	Outstanding Issues	73		
	5.3	Contact/Reference Materials	74		
6.	Con	clusion and Recommendations	74		

1. Overview Section

California Utilities typically employee Time of Use (TOU) electricity rates for larger commercial customers. Along with paying for the energy they consume (assessed on a kWh basis), these commercial customers are also charged for demand (measured in kW). Demand charges are determined using the maximum demand (or peak demand) occurring during the monthly billing period. Demand charges can be a substantial cost component of a commercial customer's electric bill.

2. Use Case Description


This use case describes and energy storage asset located downstream or behind an end customers electric meter. There are several ownership models of behind the meter energy storage. Three are described here...

- 1. Commercial Ownership The energy storage asset is located behind a commercial customer's electricity meter. The energy storage asset is owned by the commercial customer and is used to dispatch electricity to coincide with periods of peak demand. By utilizing energy storage in this fashion, the commercial customer can reduce or eliminate peak electricity demand. This action correlates to monetary savings on the commercial customer's electric bill. If the customer also employees onsite renewables generation, such as solar, the energy storage asset can boost self-consumption of energy generated at the site.
- 2. Residential Ownership Similar to commercial ownership, only owned by a an individual as opposed to a commercial entity.
- 3. An alternative ownership model for behind the meter energy storage is also possible. Many municipal and cooperative utilities do not own generation assets but rather purchase capacity from generating partners. This purchase of electricity includes demand charges. In this example, the energy storage asset is not owned by the end customer but rather by a utility. A utility would pay for and install an energy storage asset at a customer location, behind the meter. The customer would principally receive backup power benefits while the municipal utility would use the energy storage units at multiple sites, aggregated, to reduce demand charges it must pay to its generating sources.

2.1 Objectives

Customer sited energy storage can be utilized to dispatch energy to coincide with periods of peak demand, thus helping reduce or eliminate a customers demand charge burden. In addition to the primary purpose of helping customers manage demand, customer sited behind the meter energy storage resources can also provide a number of other benefits such as backup power and / or power quality thereby protecting key equipment or processes from the effects of weather related electricity interruptions and outages, rolling blackouts, brownouts, and generation and / or transmission system failures upstream of the customer sited energy storage resource.

2.2 Actors

Name	Role description
Commercial Building Owner	Property Owner seeking to reduce electricity demand charges, secure against power fluctuations and outages
Residence Owner	Property Owner seeking to reduce electricity demand charges, secure against power fluctuations and outages
Utility	IOU / Municipal Utility

2.3 Proceedings and Rules that Govern Procurement Policies and Markets for This Use

Agency	Description	Applies to
1.12		rippinco co comenciation de contractione de contractione de contractione de contraction de contr

CPUC	Self-Generation Incentive Program
Federal	FITC
Тах	
Utility	Utility TOU Tariffs
Tariffs	
CPUC	AB 2514

2.4 Location

The energy storage resource is located behind the customer electric meter.

2.5 Operational Requirements

For the purposes of this use case, the energy storage asset should be able to dispatch energy to coincide with periods of peak load demand. This can be accomplished through a programmable interface to allow the system to discharge to coincide with peak load. Alternatively, the system could employ adaptive logic which would account for various factors such as weather, onsite renewable generation, utility tariffs structure, and other variables to automatically dispatch energy at appropriate levels to reduce or eliminate peak demand. The system must be fast responding. Ideally, the system would employ some fashion of battery management system to monitor the health and state of charge of the systems batteries.

For behind the meter energy storage assets owned by utility's seeking to aggregate multiple systems, the energy storage asset should employ some type of communication interface to allow the utility to remotely control the charge and discharge of the system.

2.6 Applicable Storage Technologies

The potential storage devices that are most applicable to this use case is some form of battery, sized to support the reduction of demand charges. Currently, the most common technologies are lead acid and li-ion. However, Redox Flow Batteries (RFB) are also suited for large capacity energy storage¹.

¹ The decoupling of power and energy unique to RFBs provides maximum flexibility to size system power and energy appropriately for the target application from common building blocks.

Storage Type	Storage capacity	Discharge Characteristics	
Li-ion Battery			
Lead Acid Battery			
Ice Thermal Energy Storage	120 to 160 kW / 4 to 6 Hrs		
Redox Flow Batteries (RFB)	250 kW to 2 MW / 4 to 8 Hrs	Long 100% DOD cycle life	

2.7 Non-Storage Alternatives for Addressing this Objective

Among the non-storage options for meeting the reduction of demand and demand charges are.

- Demand Response programs that incentivize end-users to increase or decrease consumption under pre-specified conditions.
- Air Conditioning Cycling Utility controlled switch which can cycle on and off an Air Conditioners compressor unit to use less power when needed.
- Diesel Generator Limited applicability and environmental concerns
- Energy Efficiency
- Self generation (e.g. PV, CHP, Fuel Cells)

3. Cost/Benefit Analysis

3.1 Direct Benefits

End Use	Primary/ Secondar y	Benefits/Comments
1. Frequency regulation	S	Aggregated Ancillary Services
2. Spin		
3. Ramp		
4. Black start		
5. Real-time energy balancing		
6. Energy arbitrage		
7. Resource Adequacy		
8. VER ² /		
wind ramp/volt support,		
9. VER/ PV shifting, Voltage sag, rapid demand support		
10. Supply firming	Р	If combined with onsite solar or wind.
11. Peak shaving: load shift	Р	For utilities
12. Transmission peak		
capacity support (deferral)	S	For utilities
13. Transmission operation (short duration performance, inertia, system reliability)		

² VER = Variable Energy Resource

Demand-Side Management Permanent Load Shifting

14. Transmission congestion relief	S	For utilities
15. Distribution peak capacity support (deferral)	S	P, when utility-owned & dispatched
16. Distribution operation (volt/VAR support)		
17. Outage mitigation:		
microgrid	S	P For end-users
18. TOU energy mgt	Р	Helps reduce peak demand charges
19. Power quality	S	For end-users
20. Back-up power	S	Can provide backup power to critical circuits; "P" for end-users

3.2 Other Beneficial Attributes

Benefit Stream	Y/N	Assumptions
Reduce energy use	Y	
Maximize self-consumption of renewable generation	Y	When paired with on-site renewable generation.
Reduced emissions	Y	
Modularity/Incremental build	Y	Highly dependent on choice of technology
Faster build time	Y	Choice of technology and chemistry influences permitting time
Locational flexibility	Y	Highly dependent on storage technology
Safety and Enviromental	Y	Highly dependent on storage technology

Impact	

With regard to Ice Thermal Energy Storage it is worth noting that systems designed for permanent customer load shifting can, with minimal modification to the control software, be converted to serve as demand response units answering utility dispatch signals. No mechanical adjustment of the system is necessary beyond installation of the signal equipment.⁴

3.3 Costs

Cost Type	Description
Installation	
0&M	

3.4 Cost-effectiveness Considerations

With regard to Redox Flow Batteries (RFBs), System power is tailored via integrating groups of electrochemical stacks with power electronics. Optimizing system energy is achieved by adjusting the volume of liquid electrolytes and tank sizes. As result, RFB cost per kWh decreases with increased duration.

4. Barriers Analysis & Policy Options

4.1 Barrier Resolution

Barriers Identified	Y/N	Policy Options / Comments
System Need		
Cohesive Regulatory Framework		
Evolving Markets		
Resource Adequacy Value		
Cost Effectiveness Analysis		

⁴ Terry Andrews, CALMAC.

Cost Recovery Policies	
Cost Transparency & Price Signals	
Commercial Operating Experience	
Interconnection Processes	
Issues with RFO design and offer	
evaluation process	
Operational flexibility requirements	
unclear	
Value of operational flexibility	
unclear	
Value of portfolio/procurement	
flexibility undefined	
Other issues	

4.2 Other Considerations

5. Real World Example

5.1 Project Descriptions

Location	Korea (Jeju Island)
Company	Samsung SDI
Technology	Li-ion
Capacity	
Operational Status	Operational
Ownership	Residential
Primary Benefit Streams	Backup, solar shifting
Secondary Benefits	

Available Cost Information	
Contact Information	Ben Williams
	Ben.williams@samsung.com
	847.407.2856
	935 National Parkway
	Suite 93520
	Schaumburg, IL 60630

Location	1500 Walnut Street, Philadelphia, PA	
Company	CALMAC	
Technology	Ice-Bank Thermal Energy Storage	
Capacity	1,300 ton hours of cooling capacity; 4 hours 160 kW or 6 hours 120 kW of electrical energy shift	
Operational Status	Operational	
Ownership	Commercial	
Primary Benefit Streams	Peak Shaving/Load Shift, Resource Adequacy, Transmission Operation	
Secondary Benefits	Time Of Use Energy Management	
Available Cost Information		
Contact Information	Terry Andrews	
	Calmac	
	3-00 Banta Place	
	Fair Lawn, NJ 07410	
	480-659-4977	
	TAndrews@calmac.com	

Location	Almond farm in Turlock, CA	
Company	EnerVault	
Technology	Redox Flow Battery	
Operational Status	In Construction	
Ownership	Commercial	
Primary Benefit Streams	Peak Shaving/Load Shift: • Shifts Helios dual tracker PV to	
	peak hours to power 225 kW irrigation pump	
Secondary Benefits	Time Of Use Energy Management	
Available Information	Projected online by Q2 2013	
Contact Information	Bret Adams	
	Director of Business Development	
	EnerVault Corporation	
	1244 Reamwood Avenue	
	Sunnyvale, CA 94089	
	351 201 9139	
	BAdams@EnerVault.com	

5.2 Outstanding Issues

Description	Source

5.3 Contact/Reference Materials

Ben Williams

Ben.williams@samsung.com

847.407.2856

935 National Parkway

Demand-Side Management Permanent Load Shifting

Suite 93520

Schaumburg, IL 60630

6. Conclusion and Recommendations

Is ES commercially ready to meet this use?

Yes

Is ES operationally viable for this use?

Yes

What are the non-conventional benefits of storage in this use?

Demand Charge Reduction

Can these benefits be monetized through existing mechanisms?

Yes

If not, how should they be valued?

Is ES cost-effective for this use?

Yes

What are the most important barriers preventing or slowing deployment of ES in this use?

Limited track record of deployment. Access to additional revenue streams

What policy options should be pursued to address the identified barriers?

Allow broader participation of behind the meter energy storage assets in electricity markets (for example – allow bidding for ancillary services)

Should procurement target or other policies to encourage ES deployment be considered for this use?

Yes

