Re-Designing Natural Gas Tariffs to Increase Efficiency and Help Low-Income Households

Energy Policy Conference
November 14, 2012

Presenter: Lucas Davis, UC Berkeley and Energy Institute at Haas
Discussants: Christopher Danforth, Division of Ratepayer Advocates Noah Long, Natural Resources Defense Council Amrit Singh, PG\&E

Storage

U.S. Natural Gas Underground Storage Volume

Whathon culte mat
$10,000,000$

2,500.000

e1a Source d, E. Enerey Irtormation Admimitwation

Typical Bill

SB GT\&S 0048998

Relevant Studies from El@Haas

> "The Equity and efficiency of two-Part Tariffs in U.S. Natural Gas Markets", by Severin Borenstein and Lucas Davis http://ei.haas.berkeley.edu/pdf/working_papers/WP213.pdf

"Do Americans Consume Too Little Natural Gas? An Empirical Test of Marginal Cost Pricing, by Lucas Davis and Erich Muehlegger http://www.ucei.berkeley.edu/PDF/csemwp194.pdf

Overview

- Natural gas companies in the United States collect the vast majority of total revenues from the volumetric charge.
- Why? There is a widespread perception that current rate schedules have desirable distributional consequences.
- We evaluate this claim empirically using nationallyrepresentative household-level data.
- We show that the correlation between household income and natural gas consumption is indeed positive, but surprisingly weak, so current rate schedules are only mildly progressive.

Implications for Revenue Volatility

- This emphasis on volumetric charges means that revenues are highly volatile, within and across years.
- LDCs collecting a large share of their total annual net revenue during cold, high-demand winter months.
- Marginal cost pricing of gas with higher fixed monthly charge would reduce this volatility.
- Instead, many LDCs have adopted "decoupling" mechanisms in which the volumetric charge is continuously adjusted.

Residential Market

- 60% of all households in the U.S. use natural gas
- Total expenditure $\$ 50$ billion annually
- LDCs use about \$3o billion to buy natural gas
- The other $\$ 20$ billion goes for LDC costs
- LDCs regulated by state regulatory commissions using rate-of-return regulation.

"Non-Commodity" Costs for LDCs

- Installation and Maintenance of Network
- "Trunk lines" that carry gas from the interconnection with large pipelines to the local distribution lines
- Local distribution lines in neighborhoods and to individual houses
- Installation and Maintenance of Meters
- Processing bills, customer service

These costs are mostly fixed with respect to the volume of natural gas that is consumed.

Related Literature

- Coase (1946) was among the first to describe what efficient pricing would look like in such markets:
- Volumetric charge set equal to marginal cost
- Fixed monthly fee set equal to share of fixed costs.
- Optimal Two-Part Tariffs.
- Baumol and Bradford (AER, 1970), Feldstein (OJE, 1972), Ng and Weisser (ReStud 1974), Sherman and Visscher (OJE 1982)
- Efficiency of Utility Pricing.
- Naughton (ReStat 1982), Knittel (JIE 2003), Ito (EI@Haas 2010)

Data Sources

- Residential Energy Consumption Survey (RECS)
- Nationally representative data from 2005
- Includes 4,000 households
- Linked to utility-provided billing data
- Residential Appliance Saturation Survey (RASS)
- California only; from 2003
- Includes 11,700 households
- We focus on PG\&E, SDG\&E, and SCG (97\% of CA customers)
- Wholesale Natural Gas Prices from Platts

Table 1: Descriptive Statistics by Needs-Adjusted Household Income Quintiles

	1st Quintile	2nd Quintile	3rd Quintile	4th Quintile	5th Quintile
A. Household Economic and Demographic Characteristics					
Percent of Poverty Line	$<148 \%$	148-235\%	235-334\%	334-514\%	>514\%
Mean Annual Household Income (1000s)	$\begin{aligned} & \$ 16.5 \\ & (8.9) \end{aligned}$	$\begin{aligned} & \$ 32.3 \\ & (12.0) \end{aligned}$	$\begin{aligned} & \$ 46.7 \\ & (15.8) \end{aligned}$	$\begin{aligned} & \$ 65.3 \\ & (20.8) \end{aligned}$	$\begin{aligned} & \$ 129.8 \\ & (44.1) \end{aligned}$
Number of Household Members	$\begin{gathered} 2.75 \\ (1.92) \end{gathered}$	$\begin{gathered} 2.86 \\ (1.61) \end{gathered}$	$\begin{gathered} 2.71 \\ (1.51) \end{gathered}$	$\begin{gathered} 2.50 \\ (1.32) \end{gathered}$	$\begin{gathered} 2.47 \\ (1.17) \end{gathered}$
Number of Children	$\begin{gathered} 0.94 \\ (1.38) \\ \hline \end{gathered}$	$\begin{gathered} 0.85 \\ (1.14) \\ \hline \end{gathered}$	$\begin{gathered} 0.78 \\ (1.08) \\ \hline \hline \end{gathered}$	$\begin{gathered} 0.61 \\ (0.97) \\ \hline \end{gathered}$	$\begin{gathered} 0.52 \\ (0.92) \\ \hline \end{gathered}$
Proportion Homeowner	$\begin{gathered} 0.49 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.66 \\ (0.47) \end{gathered}$	$\begin{gathered} 0.77 \\ (0.42) \end{gathered}$	$\begin{gathered} 0.85 \\ (0.36) \end{gathered}$	$\begin{gathered} 0.91 \\ (0.29) \end{gathered}$
Proportion Receives Energy Assistance	$\begin{gathered} 0.18 \\ (0.38) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.24) \end{gathered}$	$\begin{aligned} & 0.0 \\ & (0) \end{aligned}$	$\begin{aligned} & 0.0 \\ & (0) \end{aligned}$	$\begin{aligned} & 0.0 \\ & (0) \end{aligned}$

Table 1: Descriptive Statistics by Needs-Adjusted Household Income Quintiles

| | 1st Quintile | 2nd Quintile | 3rd Quintile | 4th Quintile | Sth Quintile |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | B. Natural Gas Consumption and Expenditure | | | | |

Figure 1: Natural Gas Consumption and Household Income

Figure 2: Natural Gas Consumption and Household Income, Controlling for Census Division

Table 1: Descriptive Statistics by Needs-Adjusted Household Income Quintiles

	1st Quintile	2nd Quintile	3rd Quintile	4th Quintile	5th Quintile
C. Energy Efficiency					
Main Heating System is Less than 10 Years Old	$\begin{gathered} 0.34 \\ (0.47) \end{gathered}$	$\begin{gathered} 0.38 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.41 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.48 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.50 \\ (0.50) \end{gathered}$
Home is Well Insulated	$\begin{gathered} 0.30 \\ (0.46) \end{gathered}$	$\begin{gathered} 0.39 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.38 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.37 \\ (0.48) \end{gathered}$	$\begin{gathered} 0.45 \\ (0.50) \end{gathered}$
Double-Pane Windows	$\begin{gathered} 0.38 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.51 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.62 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.60 \\ (0.49) \end{gathered}$	$\begin{gathered} 0.70 \\ (0.46) \end{gathered}$

Texas

California

San Diego Gas and Electric

Table 2: Natural Gas Rate Schedules By Region

	Current Rate Schedule		Rate Schedule After Rebalancing	
	Volumetric Charge	Fixed Monthly Fee	Volumetric Charge (Marginal Cost)	Fixed Monthly Fee
	(1)	(2)	(3)	(4)
Northeast	$\begin{gathered} \$ 12.60 \\ (0.38) \end{gathered}$	$\begin{aligned} & \$ 5.82 \\ & (2.10) \end{aligned}$	\$10.04	$\begin{gathered} \$ 24.20 \\ (1.37) \end{gathered}$
Midwest	$\begin{aligned} & \$ 9.90 \\ & (0.44) \end{aligned}$	$\begin{gathered} \$ 10.90 \\ (2.75) \end{gathered}$	\$8.57	$\begin{gathered} \$ 20.03 \\ (0.68) \end{gathered}$
South	$\begin{aligned} & \$ 11.97 \\ & (0.46) \end{aligned}$	$\begin{aligned} & \$ 4.22 \\ & (1.90) \end{aligned}$	\$8.58	$\begin{gathered} \$ 19.67 \\ (0.93) \end{gathered}$
West	$\begin{gathered} \$ 11.47 \\ (0.26) \end{gathered}$	$\begin{aligned} & \$ 2.69 \\ & (0.96) \end{aligned}$	\$7.61	$\begin{gathered} \$ 17.92 \\ (0.58) \end{gathered}$
Average	$\begin{gathered} \$ 11.34 \\ (0.20) \end{gathered}$	$\begin{aligned} & \$ 6.20 \\ & (1.05) \end{aligned}$	\$8.63	$\begin{gathered} \$ 20.24 \\ (0.44) \end{gathered}$

What We Do Next

Simulate the effect of tariff rebalancing

- Lower volumetric charge to marginal cost
- And raise monthly fixed fee to maintain total revenue.

Examine distributional impact

- Simulate average bill impacts
- Using household income and other measures of need
- And then including energy assistance programs

Table 3: The Distributional Impact of a Change to Marginal Cost Pricing

Table 3: The Distributional Impact of a Change to Marginal Cost Pricing

	Mean Annual Change in Dollars		Percent Experiencing Bill Increase		Mean Bill Change in Percent	
C. Households with Children						
All Households with Children	-\$21.19	(6.20)	52.1\%	(1.5)	-2.3\%	(0.7)
Households with One Child	-\$1.34	(10.94)	53.9\%	(2.7)	-0.2\%	(1.3)
Households with Two Children	-\$33.63	(12.17)	53.5%	(2.6)	-3.6\%	(1.2)
Households with Three or More Children	- 833.72	(16.37)	46.4\%	(3.6)	-3.5\%	(1.6)
D. Low-Income Households with Children						
Households with Children	\$2.80	(18.47)	65.5\%	(3.4)	0.3\%	(2.2)
Households with One Child	\$65.68	(21.68)	73.7\%	(6.0)	10.1\%	(3.8)
Households with Two Children	-\$24.96	(36.58)	64.3\%	(5.9)	-2.7%	(3.8)
Households with Three or More Children	- \$29.94	(32.31)	58.2\%	(6.4)	-3.2\%	(3.3)

Natural Gas Expenditure as a Share of Income

Natural Gas Expenditure as a Share of Income

Table 5: The Impact on Households Below 150% of Poverty Line

Table 6: Consumer Surplus Impact of a Change to Marginal Cost Pricing

	Mean Annual Change in Consumer Surplus			
	$\epsilon=0$	$\epsilon=-0.2$	$\epsilon=-0.4$	$\epsilon=-0.6$
By Needs-Adjusted Household Income Quintile:				
1st Quintile	$\begin{gathered} -\$ 29.70 \\ (10.05) \end{gathered}$	$\begin{aligned} & -\$ 25.54 \\ & (10.10) \end{aligned}$	$\begin{aligned} & -\$ 21.17 \\ & (10.32) \end{aligned}$	$\begin{gathered} -\$ 16.60 \\ (10.11) \end{gathered}$
2nd Quintile	$\begin{gathered} -\$ 28.16 \\ (9.73) \end{gathered}$	$\begin{gathered} -\$ 23.66 \\ (9.97) \end{gathered}$	$\begin{array}{r} -\$ 18.94 \\ (10.16) \end{array}$	$\begin{gathered} -\$ 14.01 \\ (9.89) \end{gathered}$
3rd Quintile	$\begin{gathered} -\$ 12.44 \\ (9.70) \end{gathered}$	$\begin{array}{r} -\$ 7.88 \\ (9.81) \end{array}$	$\begin{array}{r} -\$ 3.10 \\ (9.92) \end{array}$	$\begin{aligned} & \$ 1.91 \\ & (9.71) \end{aligned}$
4th Quintile	$\begin{aligned} & \$ 16.47 \\ & (11.07) \end{aligned}$	$\begin{aligned} & \$ 21.46 \\ & (11.12) \end{aligned}$	$\begin{aligned} & \$ 26.68 \\ & (11.20) \end{aligned}$	$\begin{aligned} & \$ 32.15 \\ & (11.61) \end{aligned}$
5 th Quintile	$\begin{aligned} & \$ 54.97 \\ & (10.52) \end{aligned}$	$\begin{aligned} & \$ 61.72 \\ & (11.24) \end{aligned}$	$\begin{aligned} & \$ 68.82 \\ & (11.75) \end{aligned}$	$\begin{aligned} & \$ 76.28 \\ & (11.90) \end{aligned}$
Average Across Quintiles	$\begin{aligned} & \$ 0.00 \\ & (0.00) \end{aligned}$	$\begin{aligned} & \$ 4.99 \\ & (0.59) \end{aligned}$	$\begin{gathered} \$ 10.21 \\ (1.21) \end{gathered}$	$\begin{aligned} & \$ 15.69 \\ & (1.87) \end{aligned}$

Conclusion

- What matters for distributional consequences is the correlation between income and energy consumption
- We show this relationship is weak, so that current price schedules are a crude tool for redistribution
- Our analysis highlights energy efficiency and household composition as important confounding factors
- Even a modest energy assistance program would more than offset the distributional impact of tariff rebalancing for most low-income households.
- Overall, redistribution through natural gas tariffs probably less effective than redistribution through, e.g., income tax

