

Energy Storage Valuation Tool Draft Results

Investigation of Cost-Effectiveness Potential for Select CPUC Inputs and Storage Use Cases in 2015 and 2020

Ben Kaun & Stella Chen

EPRI Energy Storage Program

CPUC Storage OIR Workshop (R.10-12-007)

3-25-13

© 2013 Electric Power Research Institute, Inc. All rights reserved.

2

EPPI ELECTRIC POWER RESEARCH INSTITUTE

Garage – An Asset Utilization Case Study

© 2013 Electric Power Research Institute, Inc. All rights reserved.

3

EPCI ELECTRIC POWER RESEARCH INSTITUTE

w Industries are Emerging to Address Low set Utilization

- Underutilized assets leave a lot of money on the table
- Improved communication and information has lowered transaction costs and enabled new markets

 $\ensuremath{\mathbb{O}}$ 2013 Electric Power Research Institute, Inc. All rights reserved.

Baky Loads Cause Utilization Issues for ectric Systems

- Not just generation, but the entire T&D delivery system
- Storage could shift load from off-peak to on-peak load periods to avoid additional peak generation and T&D delivery system Illustration Only

© 2013 Electric Power Research Institute, Inc. All rights reserved

5

EPPI ELECTRIC POWER RESEARCH INSTITUTE

Bergy Storage Can Help

- Not just generation, but the entire T&D delivery system
- Storage could shift load from off-peak to on-peak load periods to avoid additional peak generation and T&D delivery system Illustration Only

© 2013 Electric Power Research Institute, Inc. All rights reserved

6

EPPI ELECTRIC POWER RESEARCH INSTITUTE

Bottle Opener – An Elegant Tool

7

© 2013 Electric Power Research Institute, Inc. All rights reserved.

e Bottle Opener - Alternatives exist, but they e less well-suited

© 2013 Electric Power Research Institute, Inc. All rights reserved.

8

EPPI ELECTRIC POWER RESEARCH INSTITUTE

equency Regulation – A niche, challenging rvice for conventional grid assets

Slow Ramping of Conventional Generator

Flywheel / Battery Energy Storage Example

Sources Kirby, B. "Ancillary Services: Technical and Commercial Insights." Wartsilla, July, 2007. pg. 13

- Fossil generator has slower response and ramp than required, and has opportunity cost of lost energy sales
- Storage can provide not only its generating capacity, but also its load to balance the system ۲ frequency
- FERC755 (Regulation Pay-for-performance) is planned for implementation in 2013 and may increase current CAISO Regulation prices when implemented

© 2013 Electric Power Research Institute, Inc. All rights reserved

orage value lies where it has a strong mpetitive advantage vs. conventional assets

- Use charging and discharging to simultaneously address both under (off-peak) and over-utilization (peak) of grid assets (T&D deferral & System capacity)
- Create value for storage charging, speed, and accuracy (Regulation)

Value for energy time-shift (arbitrage) is comparatively low

© 2013 Electric Power Research Institute, Inc. All rights reserved.

10

ELECTRIC POWER RESEARCH INSTITUTE

day's Proposed Agenda

- Introduction to EPRI
- Background
- Analytical Process
- Discussion Break
- Model
- Input Discussion Preface
- Performed Use Case Inputs and Results
 - #1: Bulk Storage (Peaker Substitution)
 - #2: Ancillary Services (Regulation) only
- Discussion Break / Lunch
- Performed Use Case Inputs and Results
 - #3: Distributed Storage sited at Utility Substation

11

- Conclusions & Next Steps
- Discussion

© 2013 Electric Power Research Institute, Inc. All rights reserved.

ELECTRIC POWER RESEARCH INSTITUTE

EPRI Introduction

© 2013 Electric Power Research Institute, Inc. All rights reserved.

12

e Electric Power Research Institute (EPRI)

- Independent, non-profit, collaborative research institute, with full spectrum industry coverage
 - Nuclear
 - Generation
 - Power Delivery & Utilization
 - Environment & Renewables
- Major offices in Palo Alto, CA; Charlotte, NC; and Knoxville, TN

Technically informing regulatory / policy-makers fits within EPRI's m

© 2013 Electric Power Research Institute, Inc. All rights reserved.

13

ELECTRIC POWER RESEARCH INSTITUTE

RI Energy Storage Program Mission

- Facilitate the development and implementation of storage options for the grid.
 - Understanding storage technologies
 - Identifying and calculating the impacts and value of storage
 - Specification and testing of storage products
 - Implementation and deployment of storage systems

© 2013 Electric Power Research Institute, Inc. All rights reserved

EPCI ELECTRIC POWER RESEARCH INSTITUTE

Sourage costs are falling with manufacturing investment

© 2013 Electric Power Research Institute, Inc. All rights reserved

15

ELGI

ELECTRIC POWER RESEARCH INSTITUTE

Ceating a Complete Storage Product

Storage Technologies

- Define duty cycle and expectations for life and efficiency
- Characterize performance
 in different regimes

Power Conditioning System

- Define critical functions and performance levels
- Test capabilities to understand optimal performance

Product Integration

- Guidelines for integration of components to ensure proper performance
- Test and evaluate product as a whole

Acquiring complete, working systems has been the most challenging part of energy storage efforts to date

16

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Ebbi

ELECTRIC POWER RESEARCH INSTITUTE

id Deployment and Integration

Field Deployment

- Installation, operations, and ٠ disposal best practices
- Siting and permitting issues ٠
- Safety and emergency protocols

Grid Integration

- Physical interconnection and protection protocols
- Methods for • understanding the effects on the distribution system

Control and Dispatch

- Communication and control protocol
- SGIP and cybersecurity •
- **Developing optimal** dispatch algorithms

Interconnection of storage to the grid is still relatively poorly understood

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Encus for Today's Presentation

- There are many areas of ongoing research to enable gridready energy storage
- Today we are discussing one part: storage value analysis (under specific assumptions)

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Background / Analytical Process

© 2013 Electric Power Research Institute, Inc. All rights reserved.

19

Content of this Analytical Process

erview of EPRI Storage Cost-Effectiveness thodology

© 2013 Electric Power Research Institute, Inc. All rights reserved

RI Storage Cost-Effectiveness Methodology

© 2013 Electric Power Research Institute, Inc. All rights reserved

23

EPPI ELECTRIC POWER RESEARCH INSTITUTE

RI Storage Cost-Effectiveness Methodology

Step 1a: Grid Problem / Solution Concepts

Step 1b: Grid Service Requirements

Define quantifiable services storage can provide

Step 2: Feasible Use Cases

Focus of this Analysis

Not Included in Today's Analysis

© 2013 Electric Power Research Institute, Inc. All rights reserved.

24

ELECTRIC POWER RESEARCH INSTITUTE

Conversion of Step 2: Feasible Use Cases

- Simulate energy storage use case operation to address multiple grid services with quantifiable technical requirements and benefits
 - Prioritize serving long-term commitments (e.g. multi-year asset deferral over a day-ahead market opportunity)
 - Constrain operation by storage technical limitations
 - Co-optimize dispatch in the markets to maximize benefits
- Total Resource Cost (TRC) test approach focus on aggregate ("stacked") value, ignore stakeholders & transaction costs
 - Ignore bulk system and environmental impacts
 - Ignore policy incentives and monetization restrictions

Understand which use case assumptions (technology, site, etc. may make storage cost-effective, and which inputs are impo

© 2013 Electric Power Research Institute, Inc. All rights reserved

25

UC Use Cases

Use Cases	Categories	
	Bulk Storage System	
Transmission-Connected Energy Storage	Ancillary Services	
	On-Site Generation Storage	
	On-Site Variable Energy Resource Storage	
Distribution-Level Energy Storage	Distributed Peaker	
	Distributed Storage Sited at Utility Substation	
	Community Energy Storage	
Demand-Side (Customer-Sited) Energy Storage	Customer Bill Management	
	Customer Bill Management w/ Market	
	Participation	
	Behind the Meter Utility Controlled	
	Permanent Load Shifting	
	EV Charging	

© 2013 Electric Power Research Institute, Inc. All rights reserved.

CPUC Use Cases Investigated in the Analysis

Use Cases	Categories	
	Bulk Storage System (aka Peaker Subsitution)	
Transmission-Connected Energy Storage	Ancillary Services	\square
	On-Site Generation Storage	
	On-Site Variable Energy Resource Storage	
Distribution-Loval	Distributed Peaker	
Distribution-Level	Distributed Storage Sited at Utility Substation	X
Energy Storage	Community Energy Storage	
	Customer Bill Management	
	Customer Bill Management w/ Market	
Demand-Side (Customer-Sited) Energy Storage	Participation	
	Behind the Meter Utility Controlled	
	Permanent Load Shifting	
	EV Charging	

Focus limited due to project resource constraints

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Cases Defined by Quantifiable Grid rvices Addressed

		\mathbf{X}	X	\mathbf{X}
Category	Quantifiable Grid Services	ces CPUC Use Cases Incl. in Analysis		
		Bulk-"Peaker Sub"	Ancillary Services	Dist. Sub. Storage
Energy	Electric Supply Capacity	X		X
	Electric Energy Time-Shift	Х		X
A/S	Frequency Regulation	X		Х
	Spinning Reserve	Х		X
	Non-Spinning Reserve	X		X
Transmission	Transmission Upgrade Deferral			
	Transmission Voltage Support			
Distribution	Distribution Upgrade Deferral			X
	Distribution Voltage Support			
Customer	Power Quality			
	Power Reliability			
	Retail Demand Charge Mgmt			
	Retail Energy Time-Shift			

Δ

٨

Other services and benefits may exist -

but they may be indirect or difficult to quantify

© 2013 Electric Power Research Institute, Inc. All rights reserved.

28

٨

EPCI ELECTRIC POWER RESEARCH INSTITUTE

Discussion Break

29

© 2013 Electric Power Research Institute, Inc. All rights reserved.

30

© 2013 Electric Power Research Institute, Inc. All rights reserved.

EPPI ELECTRIC POWER RESEARCH INSTITUTE

hat is the Energy Storage Valuation Tool SVT) ?

Transparent, user-friendly, CBA tool to assess and communicate energy storage cost-effectiveness in different use cases

- Customizable storage project lifecycle financial analysis
- Includes pre-loaded defaults for energy storage service requirements, prioritization, values, storage technologies
- Simulates use case cost-effectiveness with Total Resource Cost (TRC) approach (stacks benefits across stakeholders)
- **Multi-stakeholder** services/benefits: Generation, Transmission, Distribution, Customer
- Transparent model approach with Analytica[™] software model / input transparency through influence diagrams

© 2013 Electric Power Research Institute, Inc. All rights reserved.

31

hat is the Energy Storage Valuation Tool 5VT) ?

Transparent, user-friendly, CBA tool to assess and communicate energy storage cost-effectiveness in different use cases

EPRI RECEIPTION ENDINE Energy Storage Valuation Tool 3.1				
Step 1: Select Grid Services for Analysis	Enable Optimization Yes V			
ISO/RTO/Service Area CAISO: 2011 V	Services Selection			
Step 1b. : Define Grid Service Requirements				
System Market Inputs Transmission Inputs	Distribution Inputs Customer Premise Inputs			
tep 2: Select Financial and Economic Assun	nptions			
Ownership type				
Discount Rate Calc md	Financial and Economic Inputs			
tep 3: Select Energy Storage System Perfor	mance Characteristics and Costs			
Technology Li-Ion: 1 MW/4 Hour	Discharge Duration (Hours) 4 mil			
Discharge Capacity (KW) 1000 mil	Storage System Capital Costs (\$) \$3,600,000 md			
Define Custom Storage System (Optional)	Storage System Capital Co. (\$/kW) \$3,600 met			
tep 4: Calculate Results Calc All				
NPV Cost vs. Benefit Catc	Daily Revenue (\$) Calc not			
Annual Services Revenue (\$) Calc ma	Daily Dispatch (kWh) Calc mid			
Financial Results Technical Results	Service Specific Results Model Details			

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Instration of ESVT Operation

INPUTS

MODEL

OUTPUTS

NPV Cost / Benefit

Prices / Loads

Financial Assumptions

Storage Cost / Performance

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Storage Priority / Bid / Dispatch

rengths and Current Limitations of ESVT

- Strengths
 - Quick to setup and run analyses dozens of input parameters, not hundreds
 - Simulates storage optimal dispatch provides insights into cost-effective use cases and relative importance of inputs
 - Designed specifically to incorporate storage cost / performance parameters
- Limitations
 - No system price or generators impacts measured does not simulate the effects of different storage deployment levels
 - No consideration of environmental / GHG impacts

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Discussion of Inputs to CPUC Analysis

35

© 2013 Electric Power Research Institute, Inc. All rights reserved.

EPPI ELECTRIC POWER RESEARCH INSTITUTE

New of Analysis Inputs Process

view of Analysis Inputs Process

- December 2012 Discussion of Use Cases for Initial Focus
 - Bulk Peaker Substitution, A/S only
 - Distribution Substation-sited
- Jan-Feb 2013 CPUC request of 50 runs (prioritized)
- Jan-Mar 2013 Weekly input clarification meetings with CPUC and 2 preliminary analysis results with stakeholder group
- March 2013 Approximately 30 runs performed (time/budget constraints) with selected additional sensitivities

© 2013 Electric Power Research Institute, Inc. All rights reserved

Cverview of Input Worksheet provided by CPUC

• File: "Storage CE Input Template V12"

38

© 2013 Electric Power Research Institute, Inc. All rights reserved

ELECTRIC POWER RESEARCH INSTITUTE

erview of Results Worksheet provided by RI

• File: "ESVT Results for CPUC workshop_draft_3-25-13"

Home Direct Page A Cal Cabler - a Capy Sta Jerenal Parter B. J. Coperand Parter	Lagand Formulas = [1] + [A E form	Carta A ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	natus Vitaj 1997 - Stat 1998 - Stat Alagonaet	nge La Center	• 14 A	P.J. J. Canadianal Face Formations visited	lotal 3 2	Normal Newtrat	Bad Celculati		E E	Tarnat 2	44 - Autosum * 27 A 44 - 54 A Sene * Sort & Pent & Pater * Soled * Eating	
	0 & 201 202		9 1.0404 1.145655668	H Inflation adjustment f Inflation adjustment f) actor actor				0		<u>0</u>		a I ACM=Avoide	. Cor
Status Run	Broakeven B/C Capital Cost Ratio (S/kwh)*	Breakeven t Capital Cost (S/kW)*	Breakeven Capital Cost (\$/kWh) (2013\$)**	Breakeven Capital Cost (S/kw) (20135)**	Project Start Year	Une Cane	Technology	Nameplat Capacity (MW)	Storage Duration (h)	Totař Capex (S/kw)	Total Capes (5/kw) in 2013	Replacement Cost (S/kwb)	Replacement Cost of New Cost 2013 Entry (CONE)	De Ca (M
Done runid Done runie	1.34 83 0.96 42	07 1674 10 840	729 366		1457 731		Battery Battery		2	1056 1056	919 919	250 250	218 E3 DER ACM 218 E3 DER ACM	E
eference"	1.38 182 1.10 66 1.03 52	0 3040 9 2007 11 2004	1304 		3169 1747 1814		Battery Battery Battery			1056 1406 1761	919 1224 1533	250 250 250	218/03 DER ACM 218/03 DER ACM 218/03 DER ACM	
Summary	0.99 N/ 0.32 N/ 1.21 106	A 0 A 0 0 2120	Indivic	lual Run I	Resu	llts; Ru	ns with		2 N/A N/A	1619 1535 1556	1409 1336 919	N/A N/A 250	N/A ESVT Derived N/A E3 DER ACM 218 ESVT Derived	
inputs	1.40 186 1.22 112 1.17 95 1.46 219	0 3720 0 2240 0 1900 0 4380	"a sens	a, b, c" are itivities of	e EPI f a re	RI teste aueste	ed run			1056 1056 1056 1058	919 919 919 919 919	230 230 230 	218 ESVT Derived 218 E3 DER ACM 218 E3 DER ACM 218 E3 DER ACM	ŧ
non13 Con14 Con15 Con15 Con15	1.39 183 0.85 0.85 1.22 76	C 3660 0 0 0 0 3 3052	664		0 0 2055		LM6000 SPRINT - CT LM6000 SPRINT - CT Flow Battery		М	ore disp	tabs f atch	o righ result	nt – 8760 h ts to farthe	r sto st rig
ranta cant7 cant8 rant8	1.19 70 1.12 24 1.28 1.40 1.60	72 26.30 6 1968	234				Plow Battery lower Pumped Hydro	811 3 30	8	1325 1884 778	1153 1496	Jaa A	SEIDERACM OEIDERACM 218 N/A 200 DERACM	
* ** Reference, cuil o	1.80 1.80 1.30 0015 Putrist - Putrist	NIC AVAID	nanie "marg "nani	and the second second	NU-2 - 1011	6 Arry rante	nell, nell, ne	ni3 net4	10.13	1206	11599 1972 1972	÷}	240 E3 DER ACM 240 E3 DER ACM 240 E3 DER ACM	ţ.

© 2013 Electric Power Research Institute, Inc. All rights reserved.

39

EPPI ELECTRIC POWER RESEARCH INSTITUTE

Use Case #1: Bulk Storage (Peaker **Substitution) Inputs and Results**

40

© 2013 Electric Power Research Institute, Inc. All rights reserved.

EPPI ELECTRIC POWER RESEARCH INSTITUTE

SB GT&S 0520871

Meminder – 3 CPUC Use Cases

		\bigstar		\bigstar
Category	Quantifiable Grid Services	CPUC	Use Cases Incl. in An	alysis
		Bulk-"Peaker Sub"	Ancillary Services	Dist. Sub. Storage
Eporgy	Electric Supply Capacity	X		\mathbf{X}
Energy	Electric Energy Time-Shift	X		X
	Frequency Regulation	X	X	X
A/S	Spinning Reserve	X		X
	Non-Spinning Reserve	X		X
Transmission	Transmission Upgrade Deferral			
	Transmission Voltage Support			
Distribution	Distribution Upgrade Deferral			X
Distribution	Distribution Voltage Support			
	Power Quality			
Customor	Power Reliability			
customer	Retail Demand Charge Mgmt			
	Retail Energy Time-Shift			

© 2013 Electric Power Research Institute, Inc. All rights reserved.

EPPI ELECTRIC POWER RESEARCH INSTITUTE

EIk Storage Peaker Substitution

		\star	
Category	Quantifiable Grid Services	CPUC U	lse Cases Incl. in Analysis
		Bulk-"Peaker Sub"	·
Enormy	Electric Supply Capacity	X	1.Electric Supply
Energy	Electric Energy Time-Shift	X	Capacity
	Frequency Regulation	×	
A/S	Spinning Reserve	X	2.Electric Energy
	Non-Spinning Reserve	X	Time Shift
Transmission	Transmission Upgrade Deferral		2 -
	Transmission Voltage Support		3.Frequency
Distribution	Distribution Upgrade Deferral		Regulation
Distribution	Distribution Voltage Support		
	Power Quality		4.Spinning Reserve
Customer	Power Reliability		5 Non-Spinning
	Retail Demand Charge Mgmt		
	Retail Energy Time-Shift		Keserve

42

© 2013 Electric Power Research Institute, Inc. All rights reserved.

orage Dispatch Modeling Approach for Peaker Ibstitution Use Case

 Reserve top 20 CAISO load hours per month for providing energy to earn system capacity value

 Co-optimize for profitability between energy and ancillary services (reg up, reg down, spin, non-spin)

© 2013 Electric Power Research Institute, Inc. All rights reserved

fore calculating storage cost effectiveness...

- · We need a method for determining system capacity value
- System capacity value is determined by a metric called Cost of New Entry (CONE)
- CONE is the minimum required system capacity annual payment to build a new marginal combustion turbine(CT) – in California, LM6000 w/ SPRINT
- · CONE was calculated two ways:
 - E3 DER Avoided Cost Calculator* (base)
 - ESVT Residual capacity value calc

* http://www.ethree.com/documents/DERAvoidedCostModel v3 9 2011 v4d.xlsm

© 2013 Electric Power Research Institute, Inc. All rights reserved

44

ELECTRIC POWER RESEARCH INSTITUTE

stem Capacity Revenue for Storage

CONE = \$155/kW-yr (Derived from E3 DER avoided cost model)

© 2013 Electric Power Research Institute, Inc. All rights reserved.

riving and Comparing CONE values for stem Capacity Value

Ik – Peaker Substitution Use Case Base Case sumptions Provided by CPUC

Key Global and System / Market Assumptions

Category	Input	2020	2015
	Financial Model	IPP	IPP
Global	Discount Rate	11.47%	11.47%
	Inflation Rate	2%	2%
	Fed Taxes	35%	35%
	State Taxes	8.84%	8.84%
	Base Year Reference	CAISO 2011	CAISO 2011
	Real Fuel Escalation Rate	2%	2%
	Energy & A/S Escalation Rate	3%	3%
	Yr 1 capacity value (\$/kW-yr)	\$155	\$72
	CONE value (\$/kW-yr)	\$155	\$155
System / Market	Resource Balance Year	2020	2020
	Mean Energy Price (\$/MWh)	39.96	34.47
	Mean Reg Up Price (\$/MW-hr)	12.01	10.36
	Mean Reg Down price (\$/MW-hr)	9.04	7.80
	Mean Spin price (\$/MW-hr)	9.43	8.13
	Mean Non-Spin price (\$/MW-hr)	1.28	1.11

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Ik – Peaker Substitution Base Case sumptions Provided by CPUC

 Key technology cost / performance assumptions – storage and conventional (CT)

Category	Input	2020				2015		
		Battery*	Flow Battery	PHS	AG CAES	CT**	Battery	Flow Battery
	Nameplate Capacity (MW)	50	50	300	100	50	50	50
	Nameplate Duration (hr)	2	4	8	8	-	2	4
	Capital Cost (\$/kWh) -Start Yr Nominal	528	443	166	211	-	603	775
	Capital Cost (\$/kW) - Start Yr Nominal	1056	1772	1325	1684	1619	1206	3100
	Project Life (yr)	20	20	100	35	20	20	17
	Roundtrip Efficiency	83%	75%	82.50%	-	-	83%	70%
	Variable O&M (\$/kWh)	0.00025	0.00025	0.001	0.003	0.004	0.00025	0.00025
Technology Cost /	Fixed O&M (\$/kW-yr)	15	15	7.5	5	17.4	15	15
Performance	Major Replacement Frequency	1	0	-	-	-	1	0
	Major Replacement Cost (\$/kWh)	250	-	-	-	-	250	-
	MACRS Depreciation Term (yr)	7	7	7	7	7	7	7
	Energy Charge Ratio (CAES)	-	-	-	0.7	-	-	-
	Full Capacity Heat Rate (CAES/CT)	-			3810	9387	-	-
	Heat Rate Curve (CAES/CT)	-	-	-	see wkst	see wkst	-	-
	Turbine Efficiency Curve (PHS)	-	-	see wkst	-	-	-	-
	Pump Efficiency (PHS)	-	-	see wkst	-	-	-	

Battery based loosely on Li-ion is most common base case * **CT based on LM6000 w/ SPRINT technology

© 2013 Electric Power Research Institute, Inc. All rights reserved.

48

EPPI ELECTRIC POWER RESEARCH INSTITUTE

In 1: Peaker Substitution Result for Base Case th CPUC Inputs

- Benefit/Cost Ratio = 1.17 ۲
- Breakeven Capital Cost: \$831/kWh (\$1662/kW) in 2013 inflation adjusted dollars

2020 Base Case

- Synchronous Reserve
- Non-synchronous Reserve
- System Electric Supply
- Electricity Sales
- Taxes (Refund or Paid)
- Operating Costs
- Financing Costs (Debt)
- Capital Expenditure

© 2013 Electric Power Research Institute, Inc. All rights reserved

Year 2020

\$250/kWh

Sensitivity to Regulation Service Value (1 of 2) **Regulation Price vs. 2X Price**

			Base Case	Ba Re	ase Caso eg	e + 2x
Breakeven Capital C	ost in 2	013 dollars	\$831/kWh (\$1662/kW)	\$´ (\$	1584 /kW 3168/kW	′h ′)
	" 300	20	20 Base Case		Base (Reg	Case + 2x g price
<u>Base Case Inputs</u> Year 2020	sio IIIIN 250		 ■ Frequency Regulation ■ Synchronous Reserve (Spin) 	300 signal	Mu	ltiplier
50MW, 2hr (battery) CapEx = \$1056/kW, \$528/kWh	200		Non-synchronous Reserve (Non-spin)	₩ 250)		
1 Batt Replacement @ \$250/kWh 11 5% discount rate	150		 System Electric Supply Capacity Electricity Sales 	200		
83% RT Efficiency Energy & A/S prices escalated 3%/yr from CAISO 2011	100		■ Taxes (Refund or Paid) ■ Operating Costs	100 -		
	50		—— ■ Financing Costs (Debt) ■ Capital Expenditure	50		
	0	Cost Ber	nefit (Equity)		Cost	Benefit

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Sensitivity to Regulation Service Value (2 of 2) se Regulation Value vs. No Regulation Value

			Bas	e Case	Ba Re	ase Case egulation	w/o
Breakeven Capital C	cost in 2	013 dollars	\$83 (\$10	1 /kWh 662/kW)	\$4 (\$	23 /kWh 846/kW)	
	300	20)20 B	ase Case	B	ase Case Regulati	e w/o ion
	lions			Frequency Regulation	<mark>ي</mark> 300		
Pase Case Inputs Year 2020	₩ ₂₅₀			⊂ ■Synchronous Reserve (Spin)	VIIII 250		
50MW, 2hr (battery)				Non-synchronous			
CapEx = \$1056/kW, \$528/kWh 1 Batt Replacement @ \$250/kWh	200			System Electric Supply Capacity	200		
11.5% discount rate	150			Electricity Sales	150		
83% RT Efficiency Energy & A/S prices escalated	100	-		■ Taxes (Refund or Paid)	100		
3%/yr from CAISO 2011				Operating Costs			
	50			Financing Costs (Debt)	50		
	0	Cost Be	enefit	Capital Expenditure (Equity)	0	Cost	Benefit
112 Electric Douver Decearch Institute. Inc. All rights re	and the second		E 4			EPR	ELECTRIC POW RESEARCH INS

© 2013 Electric Power Research Institute, Inc. All rights reserved.

se Case (2hr) vs. 3hr vs. 4hr

	Base Case	Duration 3hr	Duration 4hr
Breakeven Capital Cost in	\$831 /kWh	\$582 /kWh	\$454 /kWh
2013 dollars	(\$1662/kW)	(\$1746/kW)	(\$1816/kW)

2020 Base Case (2hr Duration) Frequency Regulation Synchronous Reserve (Spin)

Benefit

Supply Capacity Electricity Sales

■Taxes (Refund or Paid)

Operating Costs

- Financing Costs (Debt)
- Capital Expenditure (Equity)

Base Case + 4hr Duration

Base Case Inputs

300

250

200

150

100

50

0

Millions

Year 2020; 50MW, 2hr (battery); CapEx = \$1056/kW, \$528/kWh; 1 Batt Replacement @ \$250/kWh; 11.5% discount rate; 83% RT Efficiency; Energy & A/S prices escalated 3%/yr from CAISO 2011

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Cost

sensitivity to Battery Replacement Frequency*

Base Case Inputs

Year 2020; 50MW, 2hr (battery); CapEx = \$1056/kW, \$528/kWh; Batt Replacements @ \$250/kWh; Battery replacements equally spaced over 20 yr life; 11.5% discount rate; 83% RT Efficiency; Energy & A/S prices escalated 3%/yr from CAISO 2011 © 2013 Electric Power Research Institute, Inc. All rights reserved. 53

PCI ELECTRIC POWER RESEARCH INSTITUTE

Sensitivity to Project Start Year: 2020 vs. 2015

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Cher Technology Comparison (Flow Battery, **ES**, Pumped Hydro)

				Flow Battery		Pumpeo Hydro	1	Abv G CAES	roun	d
Breakeven Ca 2013 dollars	pita	l Cost i	1	\$664/kWh (\$2657/kW)		\$214/kW (\$1713/ł	Vh «VV)	\$224/k (\$1790	.Wh)/kW)	
Global Inputs						Pumn	ed	Δ	G CA	FS
11.5% discount rate		Flo	w B	attery	4 000			~		
Energy & A/S prices escalated 3%/yr from CAISO 2011	300				1,200	- Tyu	0	500 SUO 450		
Flow Battery Inputs	250		8	Frequency Regulation	1,000					
50MW, 4hr (battery)	200		1	Synchronous Reserve				400		-
CapEx = \$1772/kW			10000	(Spin) Non-svnchronous	800			350		_
75% RT Efficiency	200			Reserve (Non-spin)	800			300		
No battery replacements				System Electric				000		
PH Inputs	150		-	Electricity Sales	600			250		
300MW, 8hr				Taxes (Refund or			NAMES OF COMPANY	200		
\$1325/kW, 100 yr project life	100			Paid)	400			150		-
VO&M = \$1.02/MWh, FO&M = \$7.5/kW-yr	50		I	 Operating Costs Financing Costs 	200			100		
CAES Inputs				(Debt)	200			50		
100MW, 8h	0			Capital Expenditure	-			0		
\$1584/kW, 35 yr life	Ŭ	Cost Ber	efit	(0	Cost	Benefit	. 0	Cost	Benef
Energy charge ratio = 0.7						0000	Donom			
Full load heat rate = 3810 © 2013 Electric Power Research Institut	e, Inc. All	rights reserved.		55				EP		ECTRIC PO

© 2013 Electric Power Research Institute, Inc. All rights reserved.

erview of Bulk / Peaker Results in ESVT eakeven Capital Costs (CPUC Inputs)

** "Current costs" applicable to 2-4hr battery, not other technologies contained

© 2013 Electric Power Research Institute, Inc. All rights reserved.

mmary of B/C ratio results for Bulk Storage (eaker Sub) – CPUC Inputs / Costs

B/C Ratio

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Use Case #2: A/S (Regulation)-only **Inputs & Results**

58

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Meminder – 3 CPUC Use Cases

		\bigstar	\bigstar	\bigstar
Category	Quantifiable Grid Services	CPUC	Use Cases Incl. in Ar	alysis
		Bulk-"Peaker Sub"	Ancillary Services	Dist. Sub. Storage
Enormy	Electric Supply Capacity	X		X
Епегду	Electric Energy Time-Shift	X		X
A/S	Frequency Regulation	X	X	X
	Spinning Reserve	X		X
	Non-Spinning Reserve	X		X
Transmission	Transmission Upgrade Deferral			
	Transmission Voltage Support			
Distribution	Distribution Upgrade Deferral			X
	Distribution Voltage Support			
	Power Quality			
Customor	Power Reliability			
customer	Retail Demand Charge Mgmt			
	Retail Energy Time-Shift			

© 2013 Electric Power Research Institute, Inc. All rights reserved.

K6 (Regulation)-Only

Category	Quantifiable Grid Services	CPUC Use Cases Incl. in An	alysis
		Ancillary Services	
Enormy	Electric Supply Capacity		
Lifeigy	Electric Energy Time-Shift		
	Frequency Regulation	X	
A/S	Spinning Reserve		
	Non-Spinning Reserve		1.Frequency
Transmission	Transmission Upgrade Deferral		Regulation
1141151111551011	Transmission Voltage Support		g
Distribution	Distribution Upgrade Deferral		
Distribution	Distribution Voltage Support		
	Power Quality		
Customore	Power Reliability		
customer	Retail Demand Charge Mgmt		
	Retail Energy Time-Shift		

© 2013 Electric Power Research Institute, Inc. All rights reserved.

60

SB_GT&S_0520891

orage Dispatch Modeling Approach for gulation Only Use Case

- Optimize for profitability between regulation up, regulation down, and no action; manage storage state-of-charge
- Account for associated charging / discharging costs and revenues

© 2013 Electric Power Research Institute, Inc. All rights reserved.

61

ELECTRIC POWER RESEARCH INSTITUTE

6 (Regulation)-only Base Case Assumptions bvided by CPUC (1 case)

Key Global and System / Market Assumptions

Category	Input	2020
	Financial Model	IPP
	Discount Rate	11.47%
Global	Inflation Rate	2%
	Fed Taxes	35%
	State Taxes	8.84%
	Base Year Reference	CAISO 2011
	Real Fuel Escalation Rate	2%
Suctor / Market	Energy & A/S Escalation Rate	3%
System / Warket	Mean Energy Price (\$/MWh)	39.96
	Mean Reg Up Price (\$/MW-hr)	12.01
	Mean Reg Down Price (\$/MW-hr)	9.04

62

© 2013 Electric Power Research Institute, Inc. All rights reserved.

6 (Regulation)-only Base Case Assumptions ovided by CPUC (1 case)

Key technology cost / performance assumptions

Category	Input	2020
		Battery
Technology Cost / Performance	Nameplate Capacity (MW)	20
	Nameplate Duration (hr)	0.25
	Capital Cost (\$/kWh) -Start Yr Nominal	3112
	Capital Cost (\$/kW) - Start Yr Nominal	778
	Project Life (yr)	20
	Roundtrip Efficiency	83%
	Variable O&M (\$/kWh)	0.00025
	Fixed O&M (\$/kW-yr)	15
	Major Replacement Frequency	1
	Major Replacement Cost (\$/kWh)	250
	MACRS Depreciation Term (yr)	7

63

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Segulation Only Result (2x Regulation Price

	B/C Ratio	1.40
	Breakeven Capital Cost in 2013 dollars	\$1678/kW (\$6712/kWh)
gulation		
s		
l or Paid)		
ts		
ts (Debt)		
diture		

© 2013 Electric Power Research Institute, Inc. All rights reserved.

64

ELECTRIC POWER RESEARCH INSTITUTE

Discussion Break / Lunch

© 2013 Electric Power Research Institute, Inc. All rights reserved.

65

SB GT&S 0520896

Use Case #3: Distribution Storage at Substation Inputs & Results

66

© 2013 Electric Power Research Institute, Inc. All rights reserved.

EPPI ELECTRIC POWER RESEARCH INSTITUTE

SB GT&S 0520897

Meminder – 3 CPUC Use Cases

		\bigstar		\bigstar	
Category	Quantifiable Grid Services	CPUC Use Cases Incl. in Analysis			
		Bulk-"Peaker Sub"	Ancillary Services	Dist. Sub. Storage	
Energy	Electric Supply Capacity	X		X	
	Electric Energy Time-Shift	Х		X	
	Frequency Regulation	X	X	X	
A/S	Spinning Reserve	X		X	
	Non-Spinning Reserve	X		X	
Transmission	Transmission Upgrade Deferral				
Tansmission	Transmission Voltage Support				
Distribution	Distribution Upgrade Deferral			X	
Distribution	Distribution Voltage Support				
Customer	Power Quality				
	Power Reliability				
	Retail Demand Charge Mgmt				
	Retail Energy Time-Shift				

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Stribution Storage at Substation

			\star
Category	Quantifiable Grid Services	CPUC Use Cases Incl. in Analysis	
			Dist. Sub. Storage
Eporav	Electric Supply Capacity		X
Litergy	Electric Energy Time-Shift	1.Electric Supply Capacity	X
A/S	Frequency Regulation	2.Electric Energy Time Shift	X
	Spinning Reserve	2 Eroqueney Degulation	X
	Non-Spinning Reserve		X
Transmission	Transmission Upgrade Deferral	4.Spinning Reserve	
110113111331011	Transmission Voltage Support	5 Non-Spinning Reserve	
Dictribution	Distribution Upgrade Deferral		X
Distribution	Distribution Voltage Support	6. Distribution Upgrade	
Customer	Power Quality	Deferral	
	Power Reliability		
	Retail Demand Charge Mgmt]	
	Retail Energy Time-Shift		

© 2013 Electric Power Research Institute, Inc. All rights reserved.

brage Dispatch Modeling Approach for stribution Storage at Substation Use Case

 Top priority: Peak shave annual peak distribution load to offset load growth and defer upgrade investment for years

Second priority: Reserve Top

for providing energy

 Co-optimize for profitability between energy and ancillary services (reg up, reg down, spin, non-spin)

© 2013 Electric Power Research Institute, Inc. All rights reserved

Stributed Storage at Substation Base Case sumptions Provided by CPUC

Key Global and System / Market Assumptions

Category	Input	2020	2015
	Financial Model	IPP	IPP
	Discount Rate	11.47%	11.47%
Global	Inflation Rate	2%	2%
	Fed Taxes	35%	35%
	State Taxes	8.84%	8.84%
	Base Year Reference	CAISO 2011	CAISO 2011
	Real Fuel Escalation Rate	2%	2%
	Energy & A/S Escalation Rate	3%	3%
	Cost of Distribution Upgrade (\$/kW)	\$309	\$279
	Feeder Type	C&I	C&I
	Load Growth Rate	2%	2%
Suctors / Market	Yr 1 capacity value (\$/kW-yr)	\$155	\$72
System / Warket	CONE value (\$/kW-yr)	\$155	\$155
	Resource Balance Year	2020	2020
	Mean Energy Price (\$/MWh)	39.96	34.47
	Mean Reg Up Price (\$/MW-hr)	12.01	10.36
	Mean Reg Down Price (\$/MW-hr)	9.04	7.80
	Mean Spin Price (\$/MW-hr)	9.43	8.13
	Mean Non-Spin Price (\$/MW-hr)	1.28	1.11

70

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Stributed Storage at Substation Base Case sumptions Provided by CPUC

Key technology cost / performance assumptions

Category	Input	2020		2015
		Battery (4hr)	Battery (4hr)	Flow Battery (4hr)
	Nameplate Capacity (MW)	1	1	1
	Nameplate Duration (hr)	4	4	4
	Capital Cost (\$/kWh) -Start Yr Nominal	437	500	775
Гесhnology Cost / Performance	Capital Cost (\$/kW) - Start Yr Nominal	1750	2000	3100
	Project Life (yr)	20	20	17
	Roundtrip Efficiency	83%	83%	70%
	Variable O&M (\$/kWh)	0.00025	0.00025	0.00025
	Fixed O&M (\$/kW-yr)	15	15	15
	Major Replacement Frequency	1	1	0
	Maj o r Replacement Cost (\$/kWh)	250	250	-
	MACRS Depreciation Term (yr)	7	7	7

71

© 2013 Electric Power Research Institute, Inc. All rights reserved.

EPPI ELECTRIC POWER RESEARCH INSTITUTE

stribution Storage at Substation Costfectiveness Result for Base Case

- Benefit/Cost Ratio = 1.19
- Breakeven Capital Cost: \$851/kWh (\$3403/kW) in 2013 inflation adjusted dollars

2015 Distributed Case

© 2013 Electric Power Research Institute, Inc. All rights reserved.
Stribution Base Case: Project Start Year 2015 2020

	Base Case (2015)	Base Case (2020)	
Breakeven Capital Cost in 2013 dollars	\$851/kWh (\$3403/kW)	\$914 /kWh (\$3656/kW)	

Base Case Start at 2020

2015 Distributed Case 1MW, 4hr (battery) 7 Millions CapEx = \$2000/kW, \$500/kWh 11.5% discount rate 83% RT Efficiency Energy & A/S prices escalated 5 3%/yr from CAISO 2011 \$279/kW dist. upgrade cost 4 2% load growth rate 2020 Case Inputs 3 CapEx = \$1750/kW, \$438/kWh 2 Same battery performance as base \$309/kW upgrade cost 1 2% load growth rate 0 Same market inputs as 2020 peaker use case base

Base Case Inputs

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Sonsitivity to Distribution Base Case - Duration 4 r vs. 2hr

	Base Case (4 Hour)	Base Case (2 Hour)
Breakeven Capital Cost in 2013	\$851/kWh	\$1490 /kWh
dollars	(\$3403/kW)	(\$5960/kW)

2015 Distributed Case 2hr

© 2013 Electric Power Research Institute, Inc. All rights reserved.

74

ELECTRIC POWER RESEARCH INSTITUTE

EPR

Sensitivity to Regulation Price 2X multiplier

	Base Case	Base Case (2x Reg)
Breakeven Capital Cost in 2013 dollars	\$851/kWh (\$3403/kW)	\$1307 /kWh (\$5528/kW)

2015 Base Case

Base Case + 2x Reg

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Sensitivity Distribution Load Growth: 2% vs. 4%

				Base Case (2%)		Base Case (4%)	
Breakeven Capital Cost in 2013 dollars)13	\$851/kWh (\$3404/kW)		\$619 /kW (\$2476/k	/h ₩)	
		2015	5 Base (Case	_	Base Case Load Grow	e with High /th Rate 4%
Base Case Inputs	<mark>د</mark> و ل			■ Frequency Regulation	Suc O		
1MVV, 4nr (battery)	Ilio				Villic		
CapEx = \$2000/kVV, \$500/kVVh	₹5			■ Synchronous Reserve (Spin)	25		
11.5% discount rate				Non-synchronous			
83% RT Efficiency	4			Reserve (Non-spin)	4 -		
Energy & A/S prices escalated				System Electric Supply Capacity			
\$279/kW upgrade cost	3 -			Electricity Sales	3 -		
2% load growth rate				Distribution			
2 % load growin rate	0			Investment Deferral	2		
	2			Paid)	2		
				Operating Costs			
	1			■ Financing Costs (Debt)	1 -		
	0			■ Capital Expenditure (Equity)	0		
		Cost	Benefit	(Equity)	-	Cost	Benefit

© 2013 Electric Power Research Institute, Inc. All rights reserved.

76

Sorage Comparison: Battery (Base) vs. Flow Eattery

			Ba	ise Case	Base Case Flow Batte	e w/ ery – 4h
Breakeven Capital Cost in 2013 dollars		\$8	51/kWh	\$1000 /kW	h	
		(\$:	3403/kW)	(\$4000/kW)		
Base Case Inputs		20 ²	15 Base C	ase	Base Case Flow Bat	e with tery
1MW, 4hr (battery)	<mark>ہ</mark> و			≣Frequency Regulation و ۲	6	
CapEx = \$2000/kW, \$500/kWh	Aillion			Synchronous Reserve		
11.5% discount rate	≥ 5				5	
83% RT Efficiency				™ Non-synchronous Reserve (Non-spin)		
Energy & A/S prices escalated 3%/yr from CAISO 2011	4	-		System Electric Supply Capacity	4	-
\$279/kW upgrade cost				Electricity Sales		
2% load growth rate	3			:	3	_
Flow Battery Inputs				Distribution Investment Deferral		
1MW, 4hr	2			■ Taxes (Refund or Paid)	2	-
17 yr project life				(, , , , , , , , , , , , , , , , , , ,		
CapEx = \$3100/kW, \$775/kWh	1			Operating Costs	1	
No replacements	1			■Financing Costs (Debt)		
	0	Cost	Benefit	Capital Expenditure (Equity)	Cost	Benefit
2013 Electric Power Research Institute Inc. All right	c received		77	· · · ·	EPP	ELECTRIC POWER

© 2013 Electric Power Research Institute, Inc. All rights reserved.

erview of Distribution Results: Breakeven pital Costs

2500 2000 Approximate 1500 "Current Costs"* 1000 2015 CPUC Input Costs ۵ 500 (Base Case) All Cases Cost-Effective with CPUC Inputs; Few Cases Cost-Effective at Current C

Breakeven Capital Cost (\$/kWh) in 2013 dollars

* Based on 2011 EPRI Storage Cost Survey and other sources

** "Current costs" applicable to 2-4hr battery, not other technologies contained ELECTRIC POWER RESEARCH INSTITUTE EDGI

© 2013 Electric Power Research Institute, Inc. All rights reserved.

erview of Distribution Case: Benefit-Cost tio with CPUC Inputs

© 2013 Electric Power Research Institute, Inc. All rights reserved.

79

Ebbi

Conclusions & Next Steps

80

© 2013 Electric Power Research Institute, Inc. All rights reserved.

EPRI ELECTRIC POWER RESEARCH INSTITUTE

SB GT&S 0520911

erview of all Benefit-to-Cost Ratios **B/C** Ratio

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Overview of findings

- Key findings from modeling analysis
 - Under provided assumptions, no clear conclusions between cost-effectiveness of different storage tech
 - Shorter duration typically allows for higher breakeven costs and improved benefit-to-cost ratios
 - Regulation is valuable for storage and price multiplier (pay-for-performance) drives battery storage profitability significantly
 - System capacity and T&D investment deferral are high value services
 - Higher Energy & A/S price escalation assumptions drive higher values in storage

Reminder: Results provided are valid only under stated CPUC assumptions.

© 2013 Electric Power Research Institute, Inc. All rights reserved.

82

ELECTRIC POWER RESEARCH INSTITUTE

EPRI

Conclusions

- In this analysis, ESVT calculated that storage is costeffective under most of the scenarios defined by the CPUC
- Storage still faces significant challenges in terms of integration and deployment in the field
- Cost targets for storage defined in these scenarios have yet to be achieved

© 2013 Electric Power Research Institute, Inc. All rights reserved.

83

xt Steps – Comments and Reporting

- We would love to hear your comments and feedback to this analysis
- Intend to produce a publicly available EPRI report in the June timeframe to more formally present the results of this analysis
 - Opportunity to incorporate FAQ's from stakeholders and clarifications
- Analysis is still at an early stage! Case runs were completed in a short amount of time. More analysis pending.

© 2013 Electric Power Research Institute, Inc. All rights reserved.

84

EPPI ELECTRIC POWER RESEARCH INSTITUTE

SB_GT&S_0520915

Toank you!

- Active participation from CPUC, CESA, PG&E, SCE, and SDG&E to support our input clarification questions and format inputs in a way that resulted in only a small number of miscommunications
 - Special thanks to Giovanni Damato of CESA for managing the input template
- Great feedback on important tool outputs and formats that will be incorporated into future versions of the ESVT.

© 2013 Electric Power Research Institute, Inc. All rights reserved.

85

EPRI

Together...Shaping the Future of Electricity

86

© 2013 Electric Power Research Institute, Inc. All rights reserved.

EPPI ELECTRIC POWER RESEARCH INSTITUTE

SB_GT&S_0520917