California Solar nitiative Thermal Pagram

Proposed Requirements: Metering for PBI Commercial/Multifamily Pools

> Workshop April 23, 2013

An EDISON INTERNATIONAL Company

Agenda

- Introduction
- Purpose
- Other End-Uses and PBI
 - Background
 - Define End-Uses to be metered
 - Define Metering Plan Contents
 - Meter Requirements Proposal
 - Data Handling
- Solar Pool Heating

What is the purpose of this workshop?

Other End-Uses and PBI

- Outline expanded eligible end-uses
- Prese ABI Payment Process
- Discuss requirements proposal for PBI Metering
- Solicit industry feedback

Solar Pool Heating

- Straman Proposal
- Incentive Amounts
- Incentive Structure
- Calculainoputs
- Industry feedback

Other End-Uses

Background

PAs/Commission focused initial program launch on traditional solar water heating end-uses with the goal of expanding the program at a later date.

Uncertainties in modeling energy output of non-SWH end-uses for purposes of paying incentives during program start up.

February 23, 2011: The Energy Division held a workshop on issues related to the eligibility of non-SWH end-uses and how to pay incentives for these applications.

Workshop report released on July 7, 2011 summarizing the issues discussed and parties' post-workshop comments.

Implementation Timeline: Other end-uses

Summary of Changes

In accordance with Decision 013-02-018, the following changes will occur:

- Expanded End-Uses (Commercial/Multi-family)
 - Process heat applications
 - Absorption Chilling
 - □ Space Heating
 - Combination systems
- □ Allows for PBI (originally prohibited)
 - □ Required for expanded end-uses (not including pools)
 - □ Required for DHW > 250 kWth (replaces 70/30 true-up)
 - □ Opt-in for commercial/multi-family DHW \leq 250 kWth
 - Payments based on energy delivered

Summary of Changes (cont.)

PBI paid quarterly over two years

Capped at 100% of estimated incentive amount for the two year period

Estimated annual savings provided by applicant

Reviewed by Program Engineers

 Retroactivity: System must receive final signoff permit <u>after</u> Handbook approval date

PBI Incentive Structure: Natural Gas

NATURAL GAS			
Multi-Family General Market /Commercial			
Step	Incentive Rate (\$/therm)	Maximum Incentive	
1	\$7.27	\$500,000	
2	\$4.94	\$500,000	
3	\$3.28	\$500,000	
4	\$1.57	\$500,000	

PBI Incentive Structure: Low Income

Multi-Family Low Income (Natural Gas Only)			
Step Incentive Rate (\$/therm)		Maximum Incentive	
1	\$9.62	\$500,000	
2	\$7.70	\$500,000	
3	\$5.77	\$500,000	
4	\$3.53	\$500,000	

Decision 013-02-018, Page 18

PBI Incentive Structure: Electric / Propane

Electric / Propane			
Multi-Family/Commercial			
Step	Incentive Rate (\$/kwh)	Maximum Incentive	
1	\$0.21	\$250,000	
2	\$0.15	\$250,000	
3	\$0.10	\$250,000	
4	\$0.05	\$250,000	

Current CSI-Thermal Metering Requirements

Customer Performance Metering

- Required for projects 30kWth 250 kWth
- For customer information only, not revenue grade
- Can be monitored at collector loop
- Accuracy
 - Flow meter: < 2% at Full Scale
 - Temperature Sensors: < ± 1 ° C
- This requirement was not affected by D. 013-02-018

Current CSI-Thermal Metering Requirements

70/30 True-up metering

- Required for projects > 250 kWth
- True-up incentive payment after one year of actual system 70/30 True-up will be replaced with production
- Must be metered on load side (potable water)
- Must be capable of recording Btu calculations only when there is established flow
- Accuracy (Based on OIML R75 Class 1)
 - Flow meter: < 1% at rated flow range</p>
 - Temperature Sensors (matched pair): < ± 0 . 5 %
 - BTU Calculator: < 0.5%

PBI Metering

- PBI system is created in order to pay incentives on energy delivered.
 - Per D. 013-02-018, required to pay based on displaced energy...<u>not</u> heat produced by collectors
- No US Heat Meter Standard exists today, only ۲ international recommendations (OIML R75) and European Standard (EN 1434)
 - ASTM/IAPMO Effort underway
- CSI-Thermal Program: Will create program metering ۲ requirements until a US standard is established 14

Meter Requirements Proposal

Commercial/Multi-family End Uses Requiring PBI

- Water Consuming End-uses >250 kWth
 - Formerly required to participate in 70/30 True-up
- Non-Water-Consuming End-uses (any size)
 - Space Heating
 - Solar driven absorption cooling (gas backup)
 - Non-consumed process heating
- Any combination of consumed and nonconsumed loads

PBI Metering Equipment

- Meter Location: Must be metered on load side as near to end-use as feasible
- Meter Capability:
 - Must be capable of recording Btu calculations only when there is established flow
 - Must account for negative energy flows in the calculator or assure no negative flow possible
 - Must account for solar heat that is dumped
- Meter Accuracy (Based on OIML R75 Class 1)
 - Flow meter: < ± 1 %throughout the rated flow</p>
 - Temperature Sensors (matched pair): < 0.25° F
 - BTU Calculator: < ± 0 . 5 %</p>

Data Handling

FEATURE IN THE FORME STATES AND	RESPONSIBLE PARTY
15 Minute Interval Btu data submitted to the PAs	PDP
Uploading data to PDP website on a daily basis	PDP
 Submitted to PAs on a Quarterly basis PDP must validate all data prior to submitting to PAs 	PDP
Format: TBD	PDP
Data Sampling: What are meter capabilities?	Question for Meter Manufacturer
Onboard Storage Required: 7 days minimum	Meter Manufacturer
 In event of communication failure, past data stored on logger can be used Lost data cannot be estimated <u>No incentives will be paid for periods of lost</u> data. 	Needs to be specified in PDP Contract

Reporting Requirements

Data Field	1-Tank System	2-Tank System
Date	Required	Required
Time	Required	Required
Cumulative gallons of hot water consumed	If Available	If Available
Solar Btus delivered (2-tank system)	N/A	Required
Total Btus delivered (1-tank system)	Required	N/A
Back-up gas consumption (therms)	Required if gas	N/A
Back-up electric consumption (kWh)	Required if electric	N/A
Back-up propane consumption (therms)	Required if propane	N/A

*We will assume an 82% efficiency for natural gas boilers and 98% efficiency for electric boilers

Proposed Metering Requirements: Application Process

Sample Schematics

Center for Sustainable Energy

Campus District Heating

Two Tank System with Diverter

What is open for comments

- 1. Do you see any potential weakness or gap in the PBI and/or metering proposal that we outlined today?
- 2. Is there anything that you would like to recommend to enhance the PBI and metering proposal?
- Is the cost of metering (equipment and PPD service) a significant barrier for small/medium projects? What about large projects?
- 4. What is the biggest barrier, if any, for customers to participate in the PBI program?

Next Steps

Solar Pool Heating

Solar Pool Heating Background

- AB 2249 signed into law by the Governor on 9/27/12.
- The definition was expanded for "Solar water heating systems":
 - To include multifamily residential, governmental, educational, and nonprofit solar pool heating systems, but not single-family residential solar pool heating systems.
 - PAs required to hold a workshop to solicit industry feedback in order provide recommendations to PUC for program implementation.
- AB 2249 to be implemented no later than July 1, 2013
 - May 8, 2013 P A file implementation plan
 - May 22, 2013 Comments on implementation plan due
 - May 31, 2013 R e p loomments due

- Swimming pool program budget cap of \$40 million.
 - Approx. 50% of commercial gas incentive budget allocated proportionally per each utility.
- We are proposing to allow for incentives with or without gas backup.
 - This will require PUC approval.
- Incentives for natural gas customers only.
- No PBI metering requirement.

Sizing Option 1

- Maximum collector array sizing will be set to 75% of pool coverage in sq. ft. with overheat protection.
 - Rebate cap based on 75% of pool coverage.
 - Based on common practice and will prevent oversizing of pool systems.
 - Overheat protection can be temperature limit setting in the control, or mixing valve.

Sizing Option 2

- Maximum collector array sizing will be set to 100% of pool coverage in sq. ft. with overheat protection.
 - Rebate cap based on 75% of pool coverage.
 - Oversizing justification required.
 - Based on common practice and will prevent oversizing of pool systems.
 - Overheat protection can be temperature limit setting in the control, or mixing valve.

Sizing Option 3

- Maximum collector array sizing will be set to 100% of pool coverage in sq. ft. with overheat protection.
 - Rebate cap based on of pool coverage and pool temperature.
 - Overheat protection can be temperature limit setting in the control, or mixing valve.

Proposed Installation Requirements

- Prevent pool water feed from collectors exceeding 100°F.
- Use only OG-100 collectors and components that are rated for the highest expected collector loop temperature.
- Install parallel reverse return plumbing or properly adjusted flow balance valves for the array.
- Paint or jacket all exposed plastic tubing and sensor wiring to and from the collector to protect from UV degradation, or show that the tubing is UV-resistant.
- Install operating status indicator.
- Provide Owner's Manual .
- Ensure pH of pool won't harm collector tubing.

Proposed Incentive Amounts

- \$4/therm displaced is proposed incentive level, from following assumptions:
 - Installation cost range of pool systems are estimated at \$25-\$40/sq.ft. for unglazed collectors.
 - Typical generation is 3 therms/sq.ft.
 - Goal is to offset 30% of installed system costs (from Decision 10-01-022).
- Incentive step reduction in similar percentage to existing CSI Thermal program.

Swimming Pool Incentive Level

Swimming Pool Incentive Level NATURAL GAS only			
Does not apply to single family residential customers			
Step	Incentive Rate (\$/therm displaced per year)	Maximum Incentive	
1	\$4.00	\$500,000	
2	\$2.72	\$500,000	
3	\$1.83	\$500,000	
4	\$0.88	\$500,000	

Calculator Inputs – Proposed Assumption Factors

We will use TRNSYS swimming pool profile with a combination of contractor inputs and built in assumptions.

- TRNSYS Type 344 indoor and outdoor pool model.
- Assumptions:
 - Pool temperature limited to 80F.
 - For indoor pools, we will assume air temperature and relative humidity factor.
 - Pool cover required as energy efficiency mandate, with justification for exemption.
 - 12hours/day coverage
 - Cover material
 - TRNSYS model calculator will always assume pool cover

Calculator Inputs – TRNSYS Proposed Assumption Factors

- Makeup water (TRNSYS internal evap. calculation)
- Occupancy/splash factor
 - Max occupancy of 0.25 person/m2, and activity level as a function of max occupancy
- Hygiene makeup water (none)
- Wind, ambient temperature and insolation
 - TRNSYS internal weather calculation
- Wind shielding on pool (factor of 3)
- Pool dead band (1 F)
- Pump (GPM based on OG-100 test)
- Gas backup pool heater (82% efficiency)
- Usage per day (12 hours)
- Pool cover (12hours/day coverage)
 - Assumed cover material (Thickness = 8 mill; Emissivity = 0.4; Absorptance = 0.6; Conductivity = 0.1 W/m.K)

Database Calculator Inputs

Current inputs:

- Climate zone
- Tilt and azimuth
- Shade factor (both on the pool and the collector array)
- Collector (OG-100) model
- Number of collectors
- Fluid type (glycol or water or salt water)
- Show how the collector system will be protected from freeze damage.
 - Drainback; glycol; salt

Added pool inputs:

- Pool surface area
- Schedule of use
 - Seasonal or year round
 - Usage at 12 hours per day

Pool Savings Example

Commercial Pool

۲	Surface area:		3125 sq. ft.
۲	Solar collector area: (0.75 X 31	25) =	2350 sq. ft.
	 (75% of pool surface area) 		
۲	Cost of installation at \$40/sq.ft.:	(40 X 2350) =	\$94,000
۲	Estimated therms offset by solar	system:	7850 therms/year
۲	Incentive at \$4/th: (4 X 7850)) =	\$41,400

Pool Savings Example

Olympic Pool

۲	Surface area:		13,303 sq. ft.
۲	Solar collector area: (0.75 X	13,303) =	9900 sq. ft.
	 (75% of pool surface area) 		
۲	Cost of installation at \$40/s	q.ft.: (40 X 9900) =	\$396,000
۲	Estimated therms offset by solar system:		33,070 therms/year
۲	Incentive at \$4/th: (4 X	33,070) =	\$132,281

Combinations Systems

Option 1

- No combination systems
 - Minimizes complexity
 - Different incentive rates
 - Expense of PBI metering requirements

Combinations Systems

Option 2

- PBI metering will be required for each application.
 - See PBI metering requirements.
- Must show overheat protection method used on swimming pool to prevent danger to pool occupants and equipment.
- For multiple applications on one collector array, PBI metering will be required for each application.

Combinations Systems

Option 3

- PBI required for whole system.
- PE to provide ratio of domestic hot water load to pool heating load.
- PAs review during RRF application process.
- Pool collector area cannot exceed 75% of pool surface area.
- Require heat exchanger for swimming pool loop.
- Must show overheat protection method used on swimming pool to prevent danger to pool occupants and equipment.
- Swimming pool incentive will be prorated from domestic hot water incentive.

Comments

SB_GT&S_0173580