

Renewable Energy Flexibility (REFLEX) Model

CPUC Webinar May 22, 2013

man	W a	ind and solar are both variable and un need for power system flexibility	certain, creating
+	E3 (R fle	B has developed the Renewable Energy REFLEX), a tool to calculate the need fo exibility under high renewable penetra	r Flexibility Model or power system tion
+	Th po	ne tool can evaluate alternative strateg ower system flexibility needs:	gies for meeting
	۲	New flexible resources: CTs, ICEs, energy stor	
	۲	Operating strategies: scheduled renewable cu reserve scheduling	rtailment, optimal
	۲	Structural improvements: within-hour schedul Imbalance Market, forecasting improvements	ling, Energy
-	E3 PL	B is now under contract to CAISO to tes LEXOS in current LTPP cycle	st REFLEX for
unter de reducindo estera			
Energy+Er	vironn	mental Economics	· · · · · · · · · · · · · · · · · · ·

Existing Tools are Unable to Address Flexibility Needs

	Pr ch	revious studies have focused exclusively or haracterizing the operating issues		* * * * * * * * * * * * * * * * * * *
	۲	 Deterministic production simulation model runs at v timesteps (5 minutes, 10 minutes, hourly) 	arious a a a a a a a a a a a a a a a a a a a	
	۲	 Stochastic representation of day-ahead forecast err timestep flexibility needs 	ors and sub-	
	۲	 Typically select a conservative operating policy, e.g sub-timestep ramping needs 	., meet 95%	of e e e e e e e e e e e e e e e e e e e
+	Pr im	revious models do not adequately address nportant planning questions:	the [•] • • • • • • • • • • • • • • • • • •	
	۲	How much flexible capacity is needed to accommod quantity of wind and solar?		* & & & & & & & & & & & & & & & & & & &
	۲	How much wind and solar can be added to a given s more flexible resources are required?	system before	
Energy+En	vironm	nmental Economics		× 8 8 8 8 8 8 8 3 8 6 8 8 8 8 8

- + Introduction of variable renewables has shifted the capacity planning paradigm
- + The new planning problem consists of two related questions:

- How many MW of <u>dispatchable</u> resources are needed to

 (a) meet load, and (b) meet flexibility requirements on
 various time scales?
- 2. What is the optimal mix of new resources, given the characteristics of the existing fleet of conventional and renewable resources?

Problem is Stochastic in Nature

+ Load is variable and uncertain

- Often characterized as "1-in-5" or "1-in-10"
- Subject to forecast error

-	Renewable output is also variable	and	un	ce	rta	in	8 8 8 			
-	Supplies can also be stochastic			0 9 7		6 8 ·	6 16 8 6 6 1			
	 Hydro endowment varies from year to y 	/ear	 					2 65 8 5 82 8		
	 Generator forced outages are random 						4 6 6 8 8 7			19 10
	Need to know size, probability and	dur	ati	on	of	S	ny	, K		
	shortfalls		* * * *							16 ()
				5 8° -		6 8			5	

Stochastic Modeling Must be Robust

- Need occurs during "tail" events for both demand and supply
 - Need enough draws to accurately characterize the frequency, size and duration of any resource insufficiencies

+ Flexibility need shortages will be related to capacity shortages

- Large ramping events are more likely to cause problems under "stress" load conditions
- Inflexible generation may be able to "free up" flexible capacity to be available for ramping events

The REFLEX Model

3		REFLI Conve	EX is an entiona	Exten I Capac	sion of city Pla	f	n		g					
and gen	RE re (L	FLEX uti liability OLP) or	ilizes a fran planning ba Expected U	nework sin Ised on Los Inserved Er	nilar to co ss of Load nergy (EU	nve Pr E)	eni ob	tio		۲ ۱ ۲	2 0 9 6 2 9 2 8		8 8 8 8 8 8 8 8	
	۲	Similar m in both th Overgene	etrics are cald e upward and eration (EOG)	culated for Ex downward d	pected Unse irection, and	rve I Ex	d R pec	ar cte	ه ه ۱ р (d _{ه ه}	EU	IR)	* * } * * * *		
	۲	Flexibility flexibility	costs are cald violations and	culated as the I a penalty va	e product of lue	the	ex		:tec	• • •				9 8 (8 8 (9 8 (9 8 (
				Quantity of	Speed of									
				Generation	Generation	2 B.		1 0 0 7 6 6				8 8 8 6		
			Upward Direction	EUE	EUR _U	· · ·	0 0 0 6 0 0 0 0 0					8 8 8 8 8		
			Downward Direction	EOG	EUR _D	8 60 8 8 8 6	2	-	6 6 6		10 00 00 10 00 00			* * * * * *

Energy+Environmental Economics

High-level Model Organization

REFLEX Modeling Approach

Robust, stochastic production simulation modeling -

	۲	24 hours of time-sequential operations to capture unit commitment, forecast errors and ramping requirements
		 Day-ahead, hour-ahead and five-minute timesteps
	۲	Optimal unit commitment and dispatch over 24-hour period
		Response surfaces consider variability and forecast error
	۵	Simplification of operating problem is required to obtain acceptable run times
-	Co ca is l	related draws of load, wind, solar and hydro shapes to oture full distribution of operating conditions the system ikely to encounter
-	Co ca is l	related draws of load, wind, solar and hydro shapes to bure full distribution of operating conditions the system ikely to encounter Sample from largest possible range of conditions to ensure robustness of solution – might need 5000 draws
+	Co caj is l	related draws of load, wind, solar and hydro shapes to oture full distribution of operating conditions the system ikely to encounter Sample from largest possible range of conditions to ensure robustness of solution – might need 5000 draws Calculates the likelihood, magnitude, duration and cost of flexibility violations to inform potential solutions

Example Draw: High Load Weekday in August

Example Draw: High Load Weekday in August

 Within each bin, choose each (load, wind, and solar) daily profile randomly, and independent of other daily profiles.

Flexibility Cost Penalties

- + Relative cost penalties impose flexibility mitigation strategy "loading order"
- + Costs will depend on specific system and applicable policies
- Assuming that all renewables must be delivered is equivalent to placing an infinite penalty on curtailment and overgeneration

\$0-50/MWh
\$50-250/MWh
\$250-500/MWh
\$2,000-10,000/MWh
\$10,000-30,000/MWh

Energy+Environmental Economics

Curtailment of Renewable Output Could Play a Significant Role

- + Scheduled curtailment of renewables can help position conventional resources to meet ramping requirements
- + How does the cost of curtailment compare to the cost of procuring new flexible resources?

No. No. I AND A STREAM AND		1 H M 1 H H	A set of the set of the set
MRC	1. Maria - Mari	× 3 X0W	
We whether what what all the set of the second set	and the based ration of solid provided when ration instances		the second s
301 M 2 M 2 M 2 M 2 M 3 M 3 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1	2 3 17 M TO THE OVER M TO SHE	Y 779 D Sou (777 (778 (779 (778)	D. D. L.
· · · · · · · · · · · · · · · · · · ·			
S	* * * * * * * * * * * * * * * *	State 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S R S S S S
AND A DOLL AND A			and the second sec
8-20-47- ·			
THE PARTY OF			

Optimal Flexibility Investment

+ REFLEX provides an economic framework for determining optimal flexible capacity investments by trading off the cost of new resources against the value of avoided flexibility violations

Load Following Needs

+ Load Following needs can be parameterized through stochastic analysis of potential flexibility violations given a set of operating choices

۲	Used at each defined commitment interval	(e.g.	, day-ahea	d, hour-
	ahead, 15 minutes)			

- + Unit Commitment model selects optimal Load Following reserve levels from a set of pre-defined "ramping policies"
 - Model minimizes total cost, including costs of sub-interval flexibility deficiencies (unserved energy or overgeneration)
 - Carrying more Load Following reserves reduces sub-interval ramp deficiencies, but increases operating costs
- + Can also used fixed load following and regulation parameters
 - E.g., CAISO "Step 1"

Incorporating Forecast Error

 REFLEX makes unit commitment decision at specified intervals 		5 ° No				40 40			j de la constante de la consta					
 Day-ahead, hour-ahead 			e e					ا هر (入		l C S			
 Ramping policy functions incorporated into commitment decisions 				and a second						んして				
+ Ramping policy functions account for b forecast error and net load variability	oth	• • ₽ - e • •			 > >	<u> </u>		灭		5				
 Forecast error incorporated through choice or capacity (MW) axis 	n				6 6 6 6 8				10 II	8 i				
 Sub-interval variability incorporated through choice on ramp rate (MW/min.) axis 					0 0 0 0 0		5 6 5 6 5 7				5 5 5 6 5 6			
 If forecast error is reduced, ramping po function will show smaller probability of 	olic	: y		- 10 - 11							4 4 8		9 8 5' 6	
flexibility violations under a given polic	cy a	i v V v	0 0 2 0				6 6	10 (b) 10 (b)		1) 1) 1)				
					6 6 6 6	0 b		4. 4. 2.						
Energy+Environmental Economics										8		1	7	8 8

Example Ramping Policy Function

- + Approximate expected subinterval flexibility violations using 1-min data
- + Flexibility violations depend on the following variables:
 - Demand
 - Renewables
 - Generic properties of dispatch decision: Committed capacity (MW) Max. ramp rate (MW/min.)
- Simulate these violations over wide range of each of these variables
- + Ramping policy functions serve as input to dispatch model to trade off operating cost against flexibility violations

Energy+Environmental Economics

Example subhourly unserved energy function for hour with:

Demand = 2,000 MW Renewables = 500 MW

Stochastic Treatment of Hydro and Imports

+ Initial import and hydro levels drawn from historical record

- Adjusted by unit commitment and dispatch engine
- Subject to multi-hour ramping constraints developed from historical record (e.g., 95th percentile)
- Min and max values to further bound the range of values

Framework allows for use of alternative methods (e.g., fixed planning values)

Histogram of Historical CAISO Import Ramps 3500 3000 2500 5 hour nstances 12000 1200 4 hour 3 hour 2 hour 🛯 1 hour 1000 500 0 -4000 4000 -2000 2000 Ramps (MW) Histogram of Historical CAISO Hydro Ramps 3000 2500 5 hour 2000 Instances 1200 4 hour 3 hour 2 hour 🔲 1 hour 1000 500 -3000 -2000 -1000 0 1000 2000 3000 Ramps (MW)

Energy+Environmental Economics

Forced outage and Maintenance

- Forced outages are modeled using mean time to failure and mean time to repair and assuming exponential distributions
- + Maintenance is allocated after an initial model runs identify unconstrained months

REFLEX Applications

+ Analyzing strategies for renewable integration:

Operational Strategies

- **Renewable curtailment**
- **Demand response** and an
- **Forecast improvements** ada .

Additional applications

Market structure changes

perational Strategies	Physical Solutions
Renewable curtailment	+ Flexible generation
Demand response	+ Energy storage
Forecast improvements	+ Transmission to
Market structure changes	improve access to flexible resources
ditional applications	
Loss of Load Probability/Pl	anning reserve margin analysis

and the	Renewables	Effective	Load-Carrying	Capability	(ELCC)
---------	------------	-----------	---------------	------------	--------

- Calculate renewable integration cost adders m
- Economically efficient procurement of operating res
- **RPS or low-carbon policy evaluation**

Energy+Environmental Economics

Comparison between LTPP approaches

Item	2012 LTPP Deterministic Modeling	SSNAP	REFLEX
Load Peak and Shape	1 Draw	Draws from 30 years	Draws from 63 years
Intermittent Generation	1 Draw	Draws from 1 year	Draws from 3 years (wind) – 8 years (solar)
Maintenance and Forced Outage	1 Draw	Monte Carlo Draws	Monte Carlo Draws
Dispatch Granularity	Hourly	5 minutes	5 minutes
Dispatch Horizon	8760 Hours	One day per season	One day per month
Economic Dispatch	Yes	No	Yes
Reserve Shortfall	Load following, regulation, spin	Regulation, Spin	Regulation, Spin
Internal transmission constraints enforced	Yes (zonal)	Yes (zonal)	Optional (zonal)
Reliability Measure	Reserve Shortfall	Loss of Load Probability (LOLP)	LOLP, LOLF,EUE, EUR _U , EUR _D , EOG

+ 20	12 Historical Case	
۲	2012 Loads and Renewables	· · · · · · · · · · · · · · · · · · ·
۲	Test and refine REFLEX model	"一下,这些人的有些的人的是是有些有些的人。"
	 Develop model for imports and test internal t 	ransmission constraints
+ TP	P/Commercial Interest Case	· · · · · · · · · · · · · · · · · · ·
۲	Develop multi-year datasets with the same the deterministic case	build assumptions as
	 Define probabilistic context for CAISO deterministic case 	
۵	Initial model runs with Step 1 reserve requirements, additional	
۲	Test the need for flexible capacity and determine the value of operational solutions like economic pre-curtailment	
Energy+Environmental Economics		· · · · · · · · · · · · · · · · · · ·

Thank You!

Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 Web http://www.ethree.com

Arne Olson, Partner (ane@ethree.com) Dr. Jeremy Hargreaves, Consultant (arenv@ethree.com) Dr. Elaine Hart, Consultant (alane hart@ethree.com) Ryan Jones, Senior Associate (an inters@ethree.com) Dr. Ren Orans, Managing Partner (an intersection)