

Renewable Energy Flexibility (REFLEX) Results

CPUC Workshop August 26, 2013

Scope of E3 Work

	or PLEXOS and other tools	· · · · · · · · · · · · · · · · · · ·
) 2	012 Historical Case	
	2012 Loads and Renewables	
	Test and refine REFLEX model	
T	PP/Commercial Interest Case	
	Develop multi-year datasets with t the deterministic case	the same build assumptions as
	• Define probabilistic context for CA	ISO deterministic case
	 Test the need for flexible capacity operational solutions like economic 	and determine the value of c pre-curtailment

Status of REFLEX Modeling

Mroliminan/

	currently showing premimary results nom test
	r runs 1
	Model and database are largely complete
	 Results are based on 359 stochastic draws of 3 days each
	 Working on ways to improve run time to model more days
	 Very high overgeneration penalty assumed for first run
	 Models case where renewable curtailment is unavailable or to be avoided at (nearly) all cost
	Today's results illustrate the stochastic method for need determination using REFLEX and provide
	Interesting insights for discussion
. 1 ^{es}	3

Energy+Environmental Economics

é

REFLEX METHODOLOGY & ASSUMPTIONS

Defining the Problem

- Introduction of variable renewables has shifted the capacity planning paradigm
- The new planning problem consists of two related questions:

- How many MW of <u>dispatchable</u> resources are needed to

 (a) meet load, and (b) meet flexibility requirements on
 various time scales?
- 2. What is the optimal mix of new resources, given the characteristics of the existing fleet of conventional and renewable resources?

Problem is Stochastic in Nature

Load	İS	variable and
unce	rta	in

- Often characterized as "1-in-5" or "1-in-10"
- Subject to forecast error

۲	Renewable output is also variable	and	lur	ice	rta	alı	n			
	Supplies can also be stochastic		223 232			: 83 : 8				
	 Hydro endowment varies from year to 	year	2-2-0 2-2-5							
	 Generator forced outages are random 	- 0 0 0 	000 000	0 0 0 0 0		: 8: 0 : 8: -				
	Need robust stochastic modeling t	o ki	100	°°° V∘si	ize	а 6-а) — -		10 11 11		
· · · · · · · · · · · · · · · · · ·	probability and duration of any she	ortf	alls		8 8 8	• • • • • •				
							8 8		6	

Modeling Approach

- REFLEX performs stochastic production simulation modeling
- Complementary to ISO's deterministic simulation case
 - Utilizes matching base assumptions as ISO case for resource build, a average load, fuel costs & import limits to promote comparability
 - Includes large sample of alternative draws of load, wind, solar and hydro shapes to capture wider distribution of operating conditions the system is likely to encounter
 - Enables calculation of likelihood, magnitude, duration & cost of flexibility violations to provide more detail on operational challenges
 - Creates economic framework for user to adjust penalty costs to guide model's choices of tradeoffs between types of violations (e.g., lost load vs. curtailment vs. overgeneration & ramp shortages) vs. additional operating costs

REFLEX is an Extension of Conventional Capacity Planning REFLEX utilizes a framework similar to conventional reliability planning based on Loss of Load Probability (LOLP) or Expected Unserved Energy (EUE)

 Similar metrics are calculated for Expected Unserved Ramp (EUR), in both the upward and downward direction, and Expected Overgeneration (EOG)

	Quantity of Generation	Speed of Generation
Upward Direction	EUE	EURu
Downward Direction	EOG	EUR _D

Energy+Environmental Economics

												~			1. T			1997 - C					
•	Co fle:	st xib	pe ili	en itv	al v	tie 'ic	es Ia	F	or io	o n	ہ V آ	ic `l		ະ ລ.	a di	ه n	ە D				10 10		
	ord	ler	//	ы <u>Б</u>	$\phi = \phi$					10 - 11	40 - 40						ଁ						
Þ	Fle	xit e p	oil rc	ity odu		co t	st of	s	ð :h	ar e	e) e>	دلا 23	nlo De		ルた	al ec	te d	Э С		a	S	
	flei pei	xib nal	ili Ity	ity / v	v a	'ic lu	e e	iti S	0 5	n 3 3	S	с (8)	ar 8	າ C ຮ	1 9 9	ti ©	າ ເ	» ف			10 W.		
								0															
									2				b										
						ан с						8											
																		0		28			

8

REFLEX Modeling Process

Stochastic Data & Monte Carlo Draws

- Correlated draws of load, wind, solar and hydro shapes
- Load:
 - Use neural network based approach to predict daily CAISO load under historical weather conditions (from 1950-2012 daily time horizon),
 - Scaled to 2022 energy and 1-2 peak load, adjusted for embedded distributed Solar PV
 - Split into weekday/weekend day types & high load, low load, average "bins" for each month
- Wind & Solar
 - Selected from weather conditions & predicted output on days in same load "bin"

Example Draw: High Load Weekday in August

8) Load Following Needs	
	Load Following needs are parameterized through stochastic analysis of potential flexibility violations given a set of operating choices	
	Quantity of Load Following Reserve is a variable that is chosen endogenously	
	 Model minimizes total cost, including costs of sub-interval flexibility deficiencies (unserved energy or overgeneration) 	
	 Carrying more Load Following reserves reduces sub-interval ramp deficiencies (EUR_U and EUR_D) but increases operating costs and the likelihood of overgeneration (EOG) 	

Energy+Environmental Economics

Optimal Flexibility Investment

 REFLEX provides an economic framework for determining optimal flexible capacity investments by trading off the cost of new resources against the value of avoided flexibility violations

Comparison between LTPP approaches

Item	Deterministic Modeling in PLEXOS	REFLEX
Load Peak and Shape	1 Draw	Draws from 63 years
Intermittent Generation	1 Draw	Draws from: 3 years (wind) 12 years (solar)
Maintenance and Forced Outage	1 Draw	Monte Carlo Draws
Dispatch Granularity	Hourly	Hourly
Dispatch Horizon	8760 Hours	3 day unit commitment
Economic Dispatch	Yes	Yes
Reliability Measure	Reserve Shortfall	LOLP, LOLF, EUE, EUR _U , EUR _D , EOG
		1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2

Energy Environmental Economics

2012 CASE

Ran 2012 Test Case

- RECAP model showed no capacity shortages or system level overgeneration after 5,000 years of draws
- REFLEX runs had no capacity, flexibility, or over-generation violations over 1 year of draws

REFLEX Load Following Reserves response surface

 REFLEX reserve provision results are reasonable compared to current practice
 Downward

	Upw	Down	Downward			
	% of Load	MW	% of Load	MW		
minimum	7%	1,150	6%	1,972		
average	20%	5,231	15%	3,660		

 After confirming the model logic was working as expected, we moved our attention to the 2022 case

2022 REPLICATING TPP CASE

PURE CAPACITY NEED

Analysis Steps

• Step 1: PRM chec	k	<pre>sessessesses</pre>	
Add capacity (if ne	eeded) to achie	eve a 15% PRM	
• Step 2: LOLF che	ck		
 Calculate Loss-of- achieves 1-event- 	Load Frequency in-10 year star	y to ensure that systen ndard	· • «
 Necessary to ensure flexibility, not pure 	re that REFLEX e capacity shor	 violations are related tages 	. to : : : : : : : : : : : : : : : : : : :
 Uses E3's Renewa developed for the 	ble Capacity Pl CAISO	anning (RECAP) Model	
 RECAP also allow effective load car 	s for compa rying capabi	rison of NQC with ility (ELCC)	
			21

Step 1: PRM Check

- E3 replicating TPP case does not include SONGS
- PRM is calculated as total ELCC divided by 1-in-2 peak load, minus 1
- CPUC scenario tool analysis of the case shows a 15.1% PRM
- There may be a discrepancy with generator stack modeled in PLEXOS

2022	1A Early SONGS	2A Replic. TPP DR	E3 Replic. TPP
Demand (MW) *			×
Counterfactual Load	58,178	60,755	58,178
IEPR Self Gen PV	1,364	1,364	1,364
IEPR Self Gen Non PV	1,850	1,850	1,850
IEPR Non Event Based DR	93	93	93 🗧
IEPR Net Load	54,871	57,448	54,871
Inc. EE	3,103	1,926	1,926
Inc. Small PV	710	0	0
Inc. D-CHP	0	0	0
Managed Demand Net Load	51,058	55,522	52,945
			ģ.
Supply (MW)			
Existing Resources	50,442	50,442	50,442
Resource Additions	10,360	10,259	10,259
Non-RPS	4,867	4,867	4,867
RPS	5,492	5,391	5,391
Authorized Procurement	0	0	0
Imports	13,308	13,308	13,308
Inc. S-CHP	0	0	0
Event Based DR	2,595	2,336	2,336
Resource Retirements	17,263	13,146	15,392
OTC	13,146	13,146	13,146
Nuclear	2,246	0	2,246
Other Non Renewables	1,871	0	0
Net Supply	59,442	63,199	60,953
		Statistics.	÷.
Net System Balance	8,384	7,677	8.008
	116.4%	113.8%	115.1%

Step 2: LOLE Check

- Replicating TPP case meets 1-in-10 standard, including 3% spinning reserves
 - Violations of:
 - 0.025 events/year
 - 0.052 hours/year
 - 84 MWh/year
- Violations are not surprising under deterministic case assumptions
 - 10% operating margin to account for Reg., Spin, Non-Spin and Load Following
 - 1-in-5 peak load
 - 30% chance of violation across all years

3% spinning reserves + 3% non-spinning reserves + 3% load-following + 1% regulation = 10% operating margin

- Initial Accumulation of renewable capacity value is fairly well approximated by linear trend (e.g., NQC methodology)
- By 33% penetration the, marginal ELCC of variable renewables has decreased substantially

Figures use a fixed ratio of wind to solar. Storage, load growth, and responsive load is ignored

Energy Environmental Economics

NATURE OF FLEXIBILITY NEEDS

Load Ramps Increase Between

SB_GT&S_0154875

Ramp duration curves

Energy Environmental Economics

REFLEX RESULTS

Input Data Assumptions for 2022 33% RPS REFLEX Case

Assumptions	Input & notes					
CA Conventional Generators	ISO deterministic case parameters draws	; Monte Carlo outage				
Nuclear	SONGS retired; Diablo as must-run					
Conventional Hydro	Modeled as single statewide aggregate resource; max based on NQC; energy, min & ramp modeled stochastically based on historical data					
Existing Pumped Hydro Imports/Exports (ramping, minimum & maximum)	Helms (3 units), Eastwood, & Hodges-Olivenhain dispatched by model with same parameters as deterministic case Ramping capability based on historical path flows (Min = 0. Max = 13,308)					
Imports (heat rate)	Specified by month & hour based on ISO deterministic run (default = 10,000 Btu/kWh)					
Local reliability (LCR) requirements	LA basin: 40% local (40/60 Rule) SDG&E: 25% local	The LCR constraints were removed due to REFLEX				
Fuel & AB32 Permit Prices for 2022 Scenario	\$4.3/MMBtu \$24/metric ton CO2 (From ISO Case parameters) be needed to a violations in LA					
		29				

Solution Cost Penalties Assumed for Flexibility Violations

Hourly Violation	• Penalties	Relative cost penalties impose flexibility mitigation strategy "loading order"
Type of Violation	Test Run Value	Best estimate of final value
Unserved Energy	\$100,000/MWh	\$40,000/MWh
Overgeneration	\$2,000,000/MWh	Linked closely to curtailment cost
Curtailment Cost	Hard constraint	\$250/MWh; Replace lost revenues
Spinning reserves	Hard constraint	Hard constraint

Intra-hourly Violation Penalties

Type of violation	Test Run Value	Best estimate of final value
Upward Ramping Violation	\$10,000/MWh	\$1,000/MWh; highly dependent on the degree of shortage experienced
Downward Ramping Violation	\$10,000/MWh	\$200/MWh ; Could result in need for curtailment
Insufficient Regulation	\$10,000/MW	\$1,000/MW; insufficient regulation likely results in CPS violations

Energy+Environmental Economics

Base Case Results High cost over-generation

Solutions and production cost summary statistics

- No unserved energy; one day with unavoidable over-generation
- Annual production cost of \$5,100 MM/year
- Annual flexibility violation costs of \$475 MM/year

Violation costs shown for illustrative purposes and are extremely sensitive to cost parameters

Violation Type	Expected Violations (MWh	/yr)
Regulation Up	2,255	
Regulation Down	4,767	
Spinning Reserves	0	
Load following up	420,100	
Load following down	228,780	
Curtailment	4,906	
Total	660,807	

B Interpreting flexibility violation costs

- Expected flexibility violations of \$475 MM/year are a significant cost
 - May be possible to reduce total costs by procuring new resources
- As noted, significant additional work is needed to determine appropriate penalties to translate violations into costs
 - What is the impact of a violation?
 - 5 minute simulation may be necessary
 - Not a focus due to time constraints

Highest net load day

September, weekday, high-load draw

 Highest net load occurring in September is due to the limited set of random draws, nothing fundamental

Energy+Environmental Economics Draw 185

0

- This day would have resulted in a load following shortage in the deterministic run
- In REFLEX this is expressed as 608 MWh of expected ramping shortage (EUR_U), penalized at \$608,000

Energy+Environmental Economics

Day with the largest net load ramp

December, weekend, high-load and solar draw

- Single largest 1 hour net load ramp of the year
- Step 1 load following violations recorded at HE 18-20

Start-up costs not included in optimization, inclusion should reduce number of starts, but at the expense of additional flexibility violations

Startup behavior

Energy+Environmental Economics

Base Case Results \$250/MWh Curtailment Sensitivity

Test Case With Low Overgen. Penalty Not Yet Complete

This	section	shows	how	the	operations change on	a
few	selected	days				6. 6 6

- The model begins to make an economic tradeoff between overgeneration and EUR_U
 - The following days have non-negligible EUR_U during evening hours
 - REFLEX engages in "prospective" curtailment of renewables in order to smooth upward ramps
 - This is the tradeoff REFLEX is designed to assess

E Low-load, high hydro, high solar draws

Using over-generation to preserve ramping capability

- Turning thermal resources off to make space for renewables can create upward ramping challenges when renewables production drops
 - Unserved energy shown in example day
- Over-generation allows slow-start thermal resources to remain online to meet subsequent ramps
- Operational strategy must be informed by explicit cost penalties

Demand response

- Economic curtailment reduced demand response calls by 35%
- Modeling next steps include ensuring DR programs are accurately characterized by season, and hour of day, and price

Economic renewable curtailment

- Model chose to curtail in 1.5% of the hours when given the option at \$250/MWh
 - 0.1% of RPS energy
- Additional economic benefits are likely when using startup costs in the unit commitment process
- Due to the benefits of allowing curtailment to address flexibility violations, additional focus will be given to this case in the final results
 - Appropriate societal cost for undelivered RPS needs to be considered

Energy Environmental Economics

Looking Ahead

Curtailment as a function of export capability

- 33% scenarios result in over-generation on a bulk system level in all scenarios
 - 6,200 MW of export capability needed before no over-generation was seen (0% downward operating margin)
- No LCR sensitivity shown to limit problems, but 1.5 hours of overgeneration/year still seen without export capability

Additional over-generation to provide system flexibility not shown, nor is the mitigating impact of storage

Marginal over-generation

- Curtailment looks like it becomes an issue starting at around 33% RPS
- REFLEX can model the economic effect of renewable integration solutions:
 - Exports
 - Responsive load
 - Storage
 - Increasing conventional fleet flexibility
 - Increasing renewable portfolio diversity

Energy+Environmental Economics

Additional over-generation to provide system flexibility not shown, nor is the mitigating impact of storage or exports 46 **Conclusions and next steps**

- Preliminary results show significant operational challenges but no unserved energy due to flexibility shortages
- Flexible capacity may be justifiable to avoid flexibility related costs (curtailment, unit start-up, CPS violations, etc.)
- Next step will be to refine modeling assumptions and cost penalties with additional focus on the economic curtailment sensitivity

Thank You!

Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 Web

Arne Olson, Partner (ane Gethree.com) Ryan Jones, Senior Associate (generationes Gethree.com) Dr. Elaine Hart, Consultant (elane hart Gethree.com) Jack Moore, Senior Consultant (actioned for a senior) Dr. Ren Orans, Managing Partner (conditioned for a senior)

Stochastic Treatment of Hydro and Imports

- Hydro and imports are adjusted by unit commitment and dispatch engine
- Subject to multi-hour ramping constraints developed from historical record (e.g., 99th percentile)
- Min and max values to further bound the range of values

Energy+Environmental Economics

49

Stochastic Treatment of Hydro and Imports

Hydro and imports informed by historical record

- Daily average hydro energy selected from stochastic bin for same month
- Hydro and imports subject to ۲ multi-hour ramping constraints developed from historical record (99th percentile)
- Max values based on NQC and ۲ SCIT tool
- Min hydro based on historical ۲ record
- Min imports set at 0 MW due to uncertain export capability in 2022

Daily hydro minimum capacity as a function of daily average hydro

B) High-level Model Organization

Load Following Needs

Load Following needs can be parameterized through stochastic analysis of potential flexibility violations given a set of operating choices
 Used at each defined commitment interval (e.g., day-ahead, hour-ahead, 15 minutes)
Unit Commitment model selects optimal Load Following reserve levels from a set of pre-defined "ramping policies"
 Model minimizes total cost, including costs of sub-interval flexibility deficiencies (unserved energy or overgeneration)
 Carrying more Load Following reserves reduces sub-interval ramp deficiencies, but increases operating costs

Incorporating Forecast Error

at	specified intervals		0 0 0 1 1 0 0	0 - 0 0 - 0	6 6 6 6 6 6				ः ः 1 ्		
•	Day-ahead, 4 hour-ahead, 1 hour-ahead		0 o d	5.0	0.30				6		
© .	Ramping policy functions incorporated into commitment decisions				No.		1			293	8 9
Ra for	mping policy functions account for ecast error and net load variability	bot	: h . 			- 9 C	9	P		5	
	Forecast error incorporated through choice capacity (MW) axis	on		0 0 0 0 0 0							
	Forecast error incorporated through choice capacity (MW) axis Sub-interval variability incorporated throug choice on ramp rate (MW/min.) axis	on o on o o o o h o o o o o		e 9 6 9 6 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						
• If f fur fle	Forecast error incorporated through choice capacity (MW) axis Sub-interval variability incorporated throug choice on ramp rate (MW/min.) axis forecast error is reduced, ramping action will show smaller probability xibility violations under a given pol	on on on on on on on on on of icy		666888969696969 66899896969	8 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. a b b a a d d d a a a a a d d a 'a a a a					

Example Ramping Policy Function

- Approximate expected subinterval flexibility violations using 1-min data
- Flexibility violations depend on the following variables:
 - Demand
 - Renewables
 - Generic properties of dispatch decision: Committed capacity (MW) Max. ramp rate (MW/min.)
- Simulate these violations over wide range of each of these variables
- Ramping policy functions serve as input to dispatch model to trade off operating cost against flexibility violations

Energy+Environmental Economics

Example subhourly unserved energy function for hour with:

Demand = 2,000 MW Renewables = 500 MW

Forced outage and Maintenance

- Forced outages are modeled using mean time to failure and mean time to repair and assuming exponential distributions
- Maintenance is allocated after an initial model runs identify unconstrained months

Stochastic Input Data

Data Type	Stochastic	Time Slice	Source
Loads	Variable & Uncertain	Hourly 2004-2012	2004-2012 CAISO OASIS web portal
Wind Profiles	Variable & Uncertain	Hourly 2004-2006	NREL Western Wind Dataset
Solar PV Profiles	Variable & Uncertain	Hourly 1998-2009	NREL Solar Anywhere and SAM
Solar Thermal Profiles	Variable & Uncertain	Hourly 1998-2005	NREL Solar Anywhere and SAM
Hydro Energy	Variable	Monthly 1970-2011	EIA hydro production datasets
Hydro minimum capacity	Variable	Monthly 1970-2011	CAISO & EIA hydro production data
			, , , , , , , , , , , , , , , , , , ,

Energy+Environmental Economics

56