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LLNL developed system to estimate value of storage and 

demand response under uncertainty
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Supply curves and 

other detailed analyses

Data, models, and high performance computing infrastructure 

can now be used for other economic studies of California grid.
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EPRf & CESA provided storage technology 

data; DRRC provided DR capacities
From Table E-1
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Computation of energy prices at each hour of the year 

provide operational insights
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8 hour turn around on HPC would have taken 4 months on a PC.
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Li-ion batteries were added to the base case mode!
Generation and charging for 50 MW, 4 hour 

Li-ion battery in SCE service territory
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Optimal battery cycling is once in summer and twice other seasons.
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Net revenues curves show increasing benefits up until 

about 1500 MW and 3 hour discharge time

Discharge time fixed at 4 hours Capacity fixed at 300 MW.....
........

?6E CAES 

PGE Flow 

PGE Li-ion 4br

* • , PGE CAES 

PGE flow
PGE Li-Ion

i/i3

-
I ' ■

lQJC 34) c>
<y Qi
+-> CL><u

I__ !C 1
W) 01c c -1

«*** I
’to boro
ty C/-l

‘w

8 r toAB2514 (1325 MW) CP

3 hrs.c

Increasing discharge time ->Increasing storage capacity 1
Figure ES-4 Figure ES-5

Provides more insight for setting storage goals than “first MW” analysis.
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Storage reduces cycling of gas and other units
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Revenue streams from ancillary services are larger 

than energy arbitrage
i
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LFU = load following up 
LFD = load following down Spin = spinning reserve 
RegU = regulation up

RegD = regulation down Fig. 10-19

NonSpin = non spinning reserve

SB GT&S 0008676



Profits from energy arbitrage currently lower than 

levelized capital cost by at least a factor of 4 (today)

15% Profits fromDiscountrate Levelized Table 10-6
Capital cost Planl capital cost energy arbitrage-

($/kw) ($/kw-yr) ($/kw-yr)life (yr)Technology
CAES 2,000 35 302 70dFlow 1,860 15 318 20
QeinJiMtbrb. 3,600 15 618 45

Impact of technology advances - Li-ion costs may decrease by 75% 

Ancillary services - $ioo/kw-yr revenues 

Capacity credit - $H3/kw-yr for deferral of combustion turbine 

CAES close to break-even (70+100+113 = 283 - 302)
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Summary of results

Results
• Arbitrage benefits significant up to about 1500 MW storage

• Arbitrage benefits significant with < 4 h o u rdischarge time

• Regulation benefits up to 100-200 mw storage
• DR can save $84M/yr in load following costs

• DR can save $3iM/yr in regulation costs

Capabilities
• High-resolution, stochastic weather/renewables model

• Optimization under uncertainty

• Parallel runs
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Backups
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Project goal: estimate value of storage and DR with new 

tools enabled by high performance computing (HPC)
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Storage and DR valuation in a high renewables 

environment required leap-ahead analysis methods.
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We coupled stochastic wea-._ jr ; __d production simulation 

models to better estimate value of DR and storage

Figure ES-i: Renewable generation, production simulation, and resource evaluation process
• Load and generation 

at 5-minute time steps
• Storage and DR used
• Value of storage and DR
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Model of WECC devei p i with Weather 

and Forecasting (WRF) code
search....3

Figure 2^: Atmospheric Model Domain Configuration
Spatial and temporal resolution 

3 km at key resource areas in 

California
9 km for the rest of state 

27 km for rest of WECC 

Output at 15 minute intervals

WRF fluid dynamics calculations 

Wind speed, solar insolation, 

temperature

Computations
> 1 million core-hours (>1 core-century)

Big data
500 TB data set
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Demand Response Research Center provided capacity 

forecasts for each hour of the year
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Base case runs also provide estimates of ancillary 

service prices
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Value of a load following ancillary service

$/MW
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Spinning and non-spinning reserve prices reflect 

predictable ramping and random events
$/MW
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Simulation results show automated DR can reduce 

load following costs for California

Q.
O

Fraction of Baseline DR Capacity

Benefits saturate at ix baseline DR capacity estimates.
from Table 10-1
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Addition of 200 MW of storage for regulation 

improves response to contingencies
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Ensemble forecasts predicting hourly uncertainty 

can be used to set dynamic reserve margins

April 7, 2020: LLNL Study
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CEC now has a suite of state-of-the-art models 

and data sets
High resolution weather/renewables model with ensemble forecast 

- Captures 15 minute variability and uncertainty in wind, solar, and load 

3 km resolution
PLEXOS production simulation

Stochastic unit commitment that use ensemble forecasts 

5 minute economic dispatch
Valuation of demand response and storage technologies over an entire 

year
■■= Sub-5-minute regulation analysis 

Models for stability analysis
Data sets for weather, renewables, and system prices 

Implemented in high performance computing environment
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Infrastructure built with this project can be 

used to support critical policy decisions

Best places to add storage, DR, generation, and trans. (AB2514) 

Robustness of decisions to gas prices or C02 costs 

How to configure infrastructure and incentives for DR

SB GT&S 0008691



We collaborated with other organizations and 

leveraged previous work
Team

Subcontract California Institute for Energy and Environment 

Subcontract with KEMA Corp.: Kermit software, consulting 

Demand Response Research Center

CAISO: Data, models, requirements

National Center for Atmospheric Research: WRF/DART

EPRI & California Energy Storage Alliance: data
SSHm

IBM: CPLEX optimizer implementation on HPC

Energy Exemplar: PLEXOS support, implementation on HPC

NREL: System analysis model, datasets
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LLNL study builds upon previous work by DNV-KEMA

Better geographic and temporal High resolution weather (>4 million grid
cells) and renewable generation (5,494 

grid cells)

Five minute economic dispatch

diversity of renewables

Sub-hourly dispatch (< 15 

minutes)
Analyze more than 3 days 

Conduct a cost analysis
3,000 days analyzed
Using PLEXOS production simulation 

software with cost parameters for 

generators

Demand response is one of the 

resources in the PLEXOS model
Analyze demand response

Table 1 1
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AB1325 storage procurement targets
Table 1 - Initial Proposed Energy Storage Procurement Targets (in MW)

Use case category, by utility Total2014 2016 201S 2020
Southern California Edison

S3Tian
Distribution
Customer

50 65 112 310,011
40 32 13330 o3

10 15 25 33 33
Subtotal SCE 90 120 160 210 580
Pacific Gas and Electric
Transmission
Distribution
Customer

50 33 112 31065
5050 40 c3 133

1310 25 35 53
Subtotal PG&E 90 120 160 210 580
San Diego Gas & Electric 

Transmission 

Distribution 

Customer

10 SO13 22 33
7 13 23 3:10
3 5 3 3014

I Subtotal SDG&E 20 30 43 16370
Total - all 3 utilities 200 270 365 490 1,325
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