DRAFT Value of Automated Demand Response and Storage for Renewable Integration CEC-500-10-051

California Energy Commission

November 4, 2013

Lawrence Livermore National Laboratory

Thomas Edmunds* Alan Lamont, Philip Top, Matt Simpson, Jeff Mirocha, Vera Bulaevskaya, Steve Smith, Yiming Yao, Carol Meyers, Andrea Schmidt, Pedro Sotorrio

*edmunds2@llnl.gov, 925-423-8982

LLNL-PRES-????-DRAFT This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

LLNL developed system to estimate value of storage and demand response under uncertainty

EPRI & CESA provided storage technology data; DRRC provided DR capacities

From Table E-1

NNS

Technology	Specific Capital	Specific Energy Cost (\$/ kWh)	Plant	Round Trip Efficiency (%)
Li-lon battery (15 min)	1,250	5,000	15	83
Li-Ion Battery (4hr)	3,600	900	15	85
Flow Battery (5 hr)	1,860	372	15	65
Flywheel (15 min)	1,900	7,600	25	87
Compressed air (5 hr)	2,000	400	35	70

*Cost of demonstration plant in 2012.

Lawrence Livermore National Laboratory

2

Computation of energy prices at each hour of the year provide operational insights

Li-ion batteries were added to the base case model

Net revenues curves show increasing benefits up until about 1500 MW and 3 hour discharge time

Storage reduces cycling of gas and other units

Revenue streams from ancillary services are larger than energy arbitrage

Lawrence Livermore National Laboratory

7

Profits from energy arbitrage currently lower than levelized capital cost by at least a factor of 4 (today)

Discountrate	15%			Levelized	Profits from	Table 10-
		Capitalcost	Plant	capitalcost	energy arbitrage	i done i o
Technology		(\$/kw)	life (yr)	(\$/kw-yr)	(\$/kw-yr)	
CAES		2,000	35	(302)	70	
Flow		1,860	15	318	20	
Dieiomb4tbrb.		3,660	15	616	45	

- Impact of technology advances Li-ion costs may decrease by 75%
- Ancillary services \$100/kw-yr revenues
- Capacity credit \$113/kw-yr for deferral of combustion turbine
- CAES close to break-even (70+100+113 = 283 ~ 302)

øva'

Summary of results

- Results
 - Arbitrage benefits significant up to about 1500 MW storage
 - Arbitrage benefits significant with < 4 h o u rdischarge time
 - Regulation benefits up to 100-200 MW storage
 - DR can save \$84M/yr in load following costs
 - DR can save \$31M/yr in regulation costs
- Capabilities
 - High-resolution, stochastic weather/renewables model
 - Optimization under uncertainty
 - Parallel runs

Backups

Lawrence Livermore National Laboratory

SB_GT&S_0008679

Project goal: estimate value of storage and DR with new tools enabled by high performance computing (HPC)

- Explore value for energy arbitrage, load following, and regulation
- Improve modeling of variability and uncertainty
- Evaluate massive number of options to find most costeffective solutions

Storage and DR valuation in a high-renewables environment required leap-ahead analysis methods.

Lawrence Livermore National Laboratory

We coupled stochastic weather and production simulation models to better estimate value of DR and storage

Figure ES-1: Renewable generation, production simulation, and resource evaluation process

Lawrence Livermore National Laboratory

Model of WECC developed with Weather Research and Forecasting (WRF) code

- Spatial and temporal resolution
 - 3 km at key resource areas in California
 - 9 km for the rest of state
 - 27 km for rest of WECC
 - Output at 15 minute intervals
- WRF fluid dynamics calculations
 - Wind speed, solar insolation, temperature
- Computations
 - > 1 million core-hours (>1 core-century)
- Big data
 - 500 TB data set

Figure 2-1: Atmospheric Model Domain Configuration

^r Lawrence Livermore National Laboratory

Demand Response Research Center provided capacity forecasts for each hour of the year

- Economic b i dn day ahead market
- Load following dispatched at 5 minute intervals in real time market
- Regulation controlled at 4 second intervals

Lawrence Livermore National Laboratory

Base case runs also provide estimates of ancillary service prices

Regulation up

- Periods of high prices at random times throughout the year
- High prices in late afternoon in July

Regulation down

 Similar to patterns for load following down

Value of a load following ancillary service

Spinning and non-spinning reserve prices reflect predictable ramping and random events

Spinning reserve

- Periods of high prices at random times throughout the year
- High prices in late afternoon in July

Non-spinning reserve

Nonzero during summer peak

Simulation results show automated DR can reduce load following costs for California

Addition of 200 MW of storage for regulation improves response to contingencies

Ensemble forecasts predicting hourly uncertainty can be used to set dynamic reserve margins

CEC now has a suite of state-of-the-art models and data sets

- High resolution weather/renewables model with ensemble forecast
 - · Captures 15 minute variability and uncertainty in wind, solar, and load
 - 3 km resolution
- PLEXOS production simulation
 - Stochastic unit commitment that use ensemble forecasts
 - 5 minute economic dispatch
 - Valuation of demand response and storage technologies over an entire year
- Sub-5-minute regulation analysis
 - Models for stability analysis
- Data sets for weather, renewables, and system prices
- Implemented in high performance computing environment

Infrastructure built with this project can be used to support critical policy decisions

- 1. Best places to add storage, DR, generation, and trans. (AB2514)
- 2. Robustness of decisions to gas prices or CO₂ costs
- 3. How to configure infrastructure and incentives for DR

We collaborated with other organizations and leveraged previous work

Team

- Subcontract California Institute for Energy and Environment
- Subcontract with KEMA Corp.: Kermit software, consulting
 - Demand Response Research Center

Collaborators

- CAISO: Data, models, requirements
- National Center for Atmospheric Research: WRF/DART
 - EPRI & California Energy Storage Alliance: data

Tools

- IBM: CPLEX optimizer implementation on HPC
- Energy Exemplar: PLEXOS support, implementation on HPC
- NREL: System analysis model, datasets

Lawrence Livermore National Laboratory

KEMA₹

California ISO

NCAR

LLNL study builds upon previous work by DNV-KEMA

	DNV KEMA recommendation	LLNL study
1	Better geographic and temporal diversity of renewables	High resolution weather (>4 million grid cells) and renewable generation (5,494 grid cells)
2	Sub-hourly dispatch (< 15 minutes)	Five minute economic dispatch
3	Analyze more than 3 days	3,000 days analyzed
4	Conduct a cost analysis	Using PLEXOS production simulation software with cost parameters for generators
5	Analyze demand response	Demand response is one of the resources in the PLEXOS model
		Table 1-1

AB1325 storage procurement targets

Use case category, by utility	2014	2016	2018	2020	Total
Southern California Edison					
Transmission	50	65	85	110	310
Distribution	30	40	50	65	185
Customer	10	15	25	35	85
Subtotal SCE	90	120	160	210	580
Pacific Gas and Electric					
Transmission	50	65	85	110	310
Distribution	30	40	50	65	185
Customer	10	15	25	35	85
Subtotal PG&E	90	120	160	210	580
San Diego Gas & Electric					
Transmission	10	15	22	33	80
Distribution	7	10	15	23	55
Customer	3	5	8	14	30
Subtotal SDG&E	20	30	45	70	165
Total - all 3 utilities	200	270	365	490	1,325

Table 1 - Initial Proposed Energy Storage Procurement Targets (in MW)

Lawrence Livermore National Laboratory

