

#### Draft Proposed Qualifying Capacity and Effective Flexible Capacity Calculation Methodologies



#### **Energy Storage and Supply-Side Demand Response**

RA Workshop | October 15, 2013 | Joanna Gubman California Public Utilities Commission





### Agenda

- ➤ Scope
- Probabilistic Modeling
- Qualifying Capacity
- Effective Flexible Capacity
- Eligibility Criteria and Aggregation
- Testing and Certification
- Deterministic Alternatives
- ► Next Steps





## Agenda

#### ➢ Scope

- Probabilistic Modeling
- Qualifying Capacity
- Effective Flexible Capacity
- Eligibility Criteria and Aggregation
- >Testing and Certification
- > Deterministic Alternatives
- > Next Steps



### Only Supply-Side Demand Response and Energy Storage are in Scope

#### Demand Response (DR)

- May be supplied by any DR provider (DRP), whether IOU or third party
- Must participate in CAISO markets and be subject to a must-offer obligation (MOO)

#### **Energy Storage (ES)**

- Must participate in CAISO markets and be subject to a must-offer obligation (MOO)
  - Stand-alone
  - Distributed peakers
  - Customer-sited, with market participation
  - Co-located with DR or generation resources



## Load-modifying & other ES/DR are not within the scope of this proceeding

#### Demand Response (DR)

- Customer-focused programs and rates
  - Example: Critical peak pricing
- Emergency reliability programs not bidding into CAISO markets
- Typically IOU-operated
- Need not participate in any markets

#### **Energy Storage (ES)**

- Voltage support applications
- Substation energy storage
- Community energy storage
- Customer-sited storage without full market participation





### Deliverability, which yields net qualifying capacity, is also not in scope

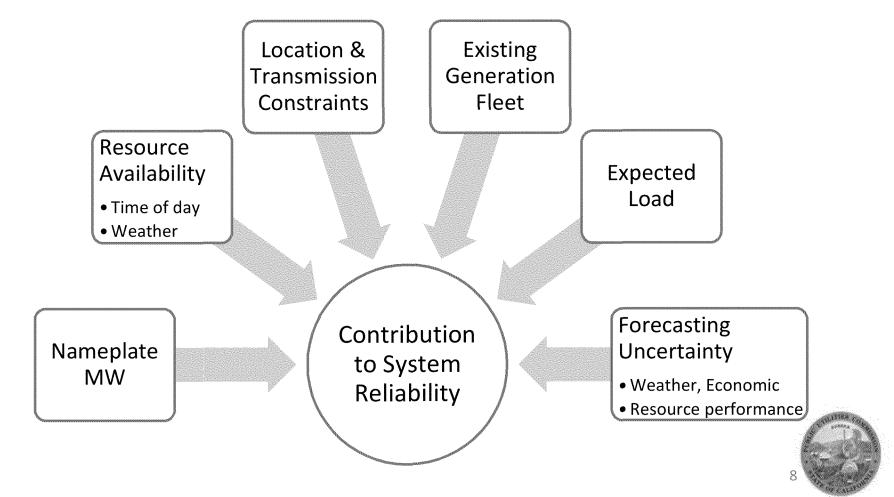
- Deliverability calculations determine the impact of transmission constraints that could prevent a resource's full QC from being deliverable to load
  - QC is an input to deliverability calculations
  - The deliverable capacity is called the net qualifying capacity (NQC)
- NQC is calculated by the CAISO and adopted by the CPUC





### Agenda

#### > Scope


#### Probabilistic Modeling

- Qualifying Capacity
- Effective Flexible Capacity
- Eligibility Criteria and Aggregation
- Testing and Certification
- > Deterministic Alternatives
- > Next Steps





## Probabilistic modeling enables a usefulness-based valuation of capacity





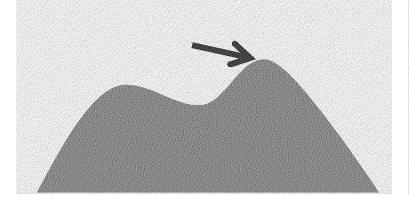
### There are two usefulness categories: meeting *peak* and *ramping* needs

#### Effective Load Carrying Capability (ELCC)

 Derating factor indicating how much each resource MW contributes to meeting peak capacity needs

#### **Effective Ramping Capability (ERC)**

• Derating factor indicating how much each resource MW contributes to meeting system ramping needs



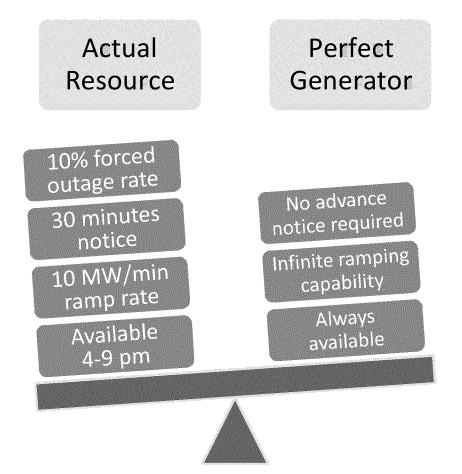



## Usefulness is measured by a resource's contribution to preventing blackouts

#### Metric: Loss of Load Expectancy (LOLE)

For a given electricity system and year, LOLE is the chance of load shedding due to insufficient capacity




#### Metric: Loss of Ramping Expectancy (LORE)

For a given electricity system and year, LORE is the chance of load shedding due to insufficient ramping capability





## A resource's ELCC and ERC express its usefulness relative to a perfect generator







**Probabilistic Modeling** 

### Why use probabilistic modeling for Energy Storage and Supply-Side DR?

Already mandated for wind and solar (SB 1x2)

More accurately represents likely conditions than deterministic modeling

Reflective of ES and DR value to the system as a whole

Will enable ED staff to provide guidance going forward as to what types of resources & design choices may be most useful





## Probabilistic modeling is harder than deterministic, but still worth pursuing

#### New resource performance uncertainty can be addressed

- For Supply-Side DR, we can draw on performance data from existing Retail DR programs
- For ES, extensive performance testing can be conducted
- Performance forecasting uncertainty can also be built into the model

Because ES and Supply-Side DR are emerging resources, we can start small and learn from experience

Rules have not yet been fully developed for these resources; let's start as we intend to proceed



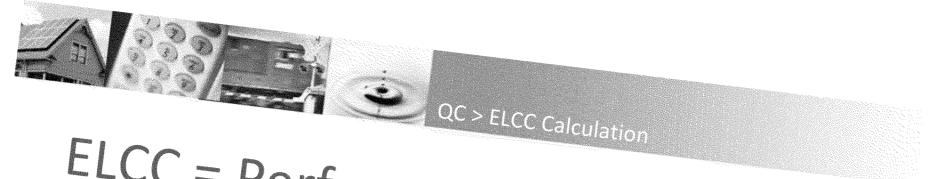
## Agenda

- > Scope
- Probabilistic Modeling

#### Qualifying Capacity

- Effective Flexible Capacity
- Eligibility Criteria and Aggregation
- >Testing and Certification
- > Deterministic Alternatives
- > Next Steps

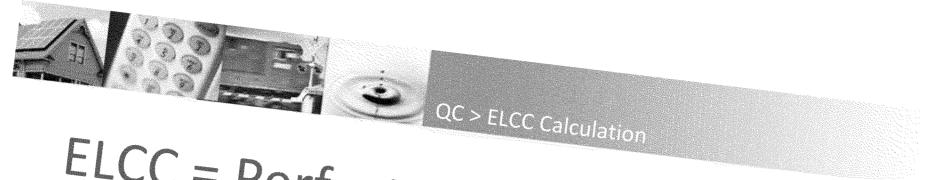





### Qualifying Capacity (QC) is a resource's contribution towards meeting peak

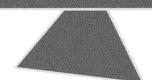
- Based on an ES or DR resource's demonstrated maximum output, P<sub>max</sub>
- Derated by the resource's ELCC (usefulness factor) to take into account resource performance and use limitations, considering:
  - P<sub>max</sub>
  - Availability by hour of day and season
  - Location
  - Temperature impacts
  - Forced outage rate
  - Startup, ramping, and shutdown profiles
  - Energy storage: Efficiency, available energy, charge/discharge duration
  - DR: Fatigue (consecutive hours and days), maximum calls, dispatch triggers
  - Historical performance of similar resources
  - Forecasting uncertainty
  - Other considerations?

Please share with us what inputs you think are needed, and how you feel we should address historical performance.

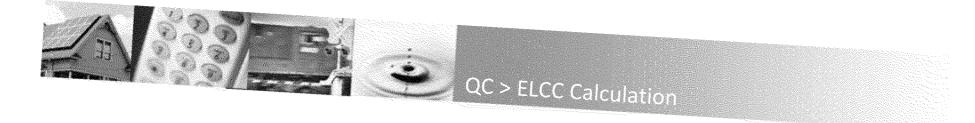






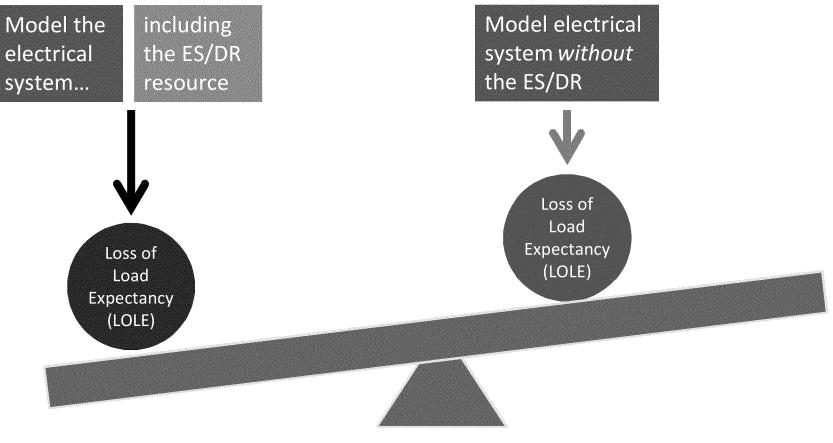

SB\_GT&S\_0145220




Model the electrical system...

including the ES/DR resource

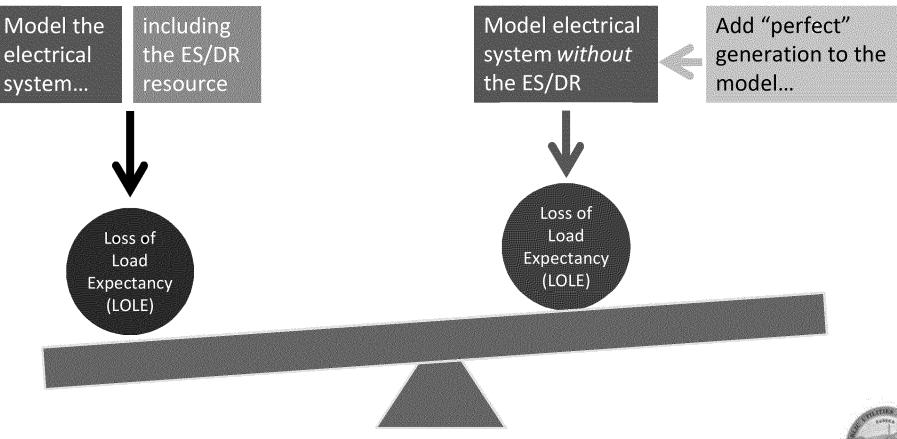






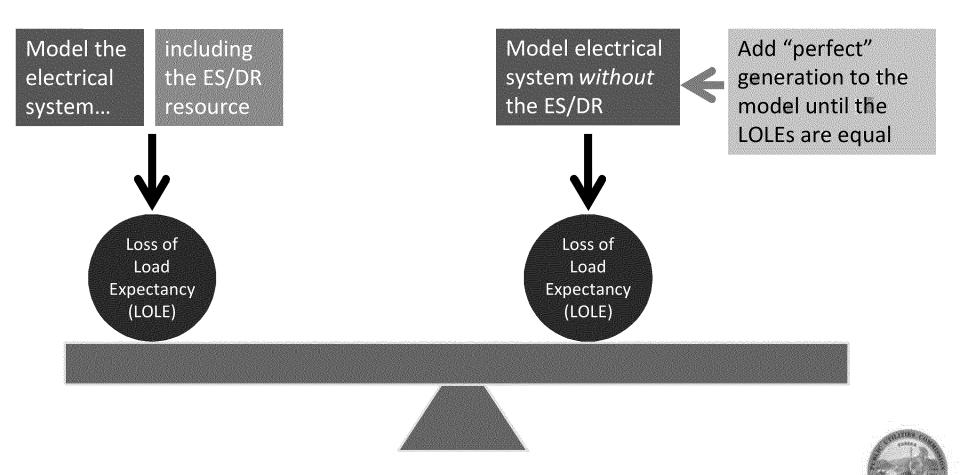









QC > ELCC Calculation



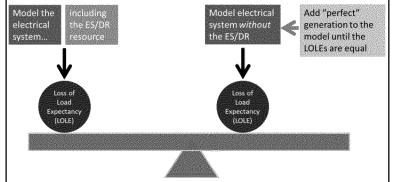










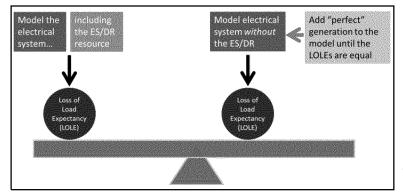

ELCC =

QC > ELCC Calculation

### ELCC = Perfect MW / Resource MW

Perfect MW Added

#### Resource P<sub>max</sub> (MW)

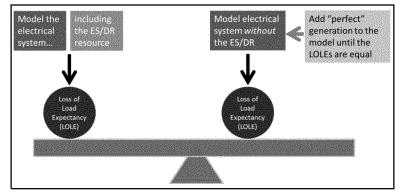







## QC is equal to the resource MW, derated by its ELCC ("usefulness")

### $QC = Resource P_{max} (MW) \times ELCC (\%)$

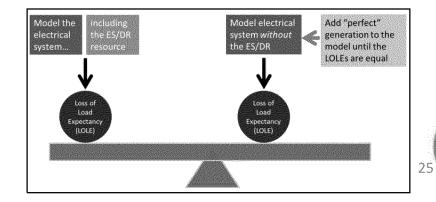


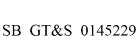





## QC is equal to the resource MW, derated by its ELCC ("usefulness")








## QC is equal to the resource MW, derated by its ELCC ("usefulness")

#### QC = Perfect MW Added







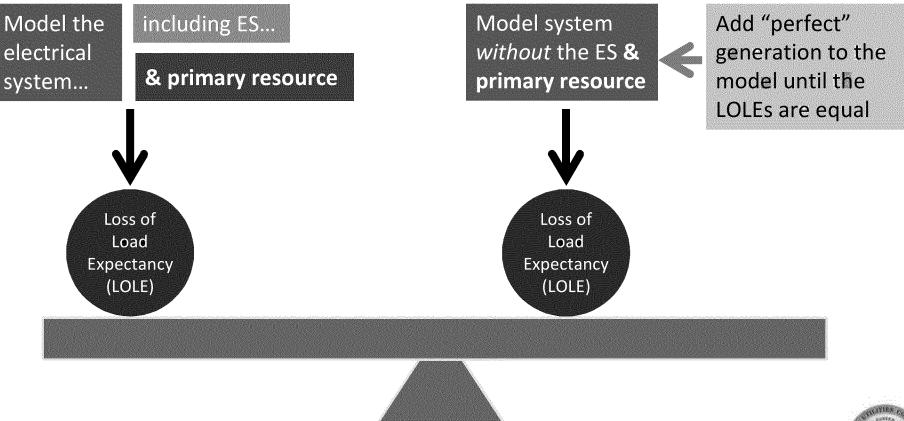
## QC is equal to the resource MW, derated by its ELCC ("usefulness")

## $QC = ELCC * P_{max}$





#### QC > Co-located Storage


### Special Case: Co-Located Storage

- Co-located ES supplements a larger, primary generator (intermittent or conventional)
- Given its supplementary role, co-located ES does not receive its own QC, but rather modifies that of the primary generator

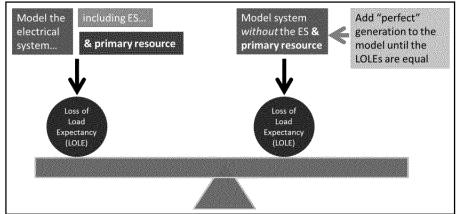




#### Special Case: Co-Located Storage





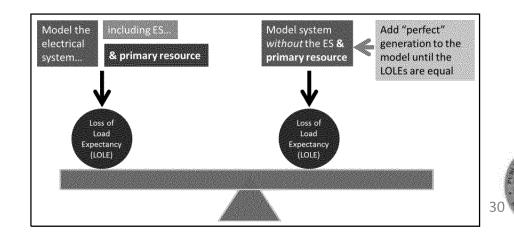



ELCC

#### Special Case: Co-Located Storage

#### Perfect MW Added

#### Primary Resource P<sub>max</sub> (MW)



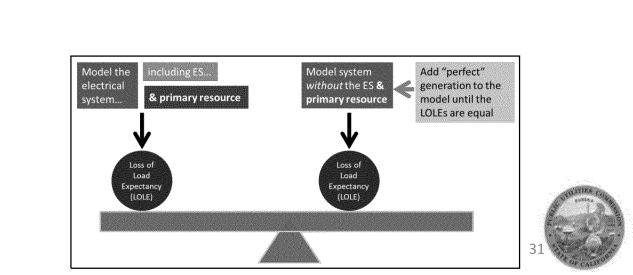





## The QC is the primary resource MW, derated by its ES-supplemented ELCC

### $QC = Primary P_{max} (MW) \times ELCC (\%)$







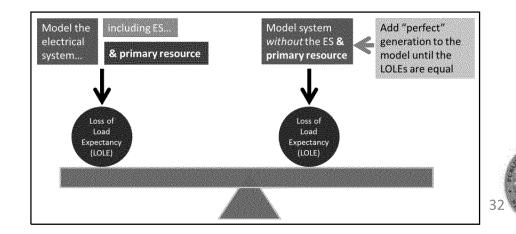

 $QC = Primary P_{max}$  (MW)

Х

## The QC is the primary resource MW, derated by its ES-supplemented ELCC



Perfect MW Added


Primary P<sub>max</sub> (MW)



QC > Co-located Storage

## The QC is the primary resource MW, derated by its ES-supplemented ELCC

#### QC = Perfect MW Added







QC > Co-located Storage

## The QC is the primary resource MW, derated by its ES-supplemented ELCC

## QC = ELCC \* P<sub>max,primary</sub>



SB\_GT&S\_0145237



## Agenda

> Scope

- Probabilistic Modeling
- > Qualifying Capacity

#### Effective Flexible Capacity

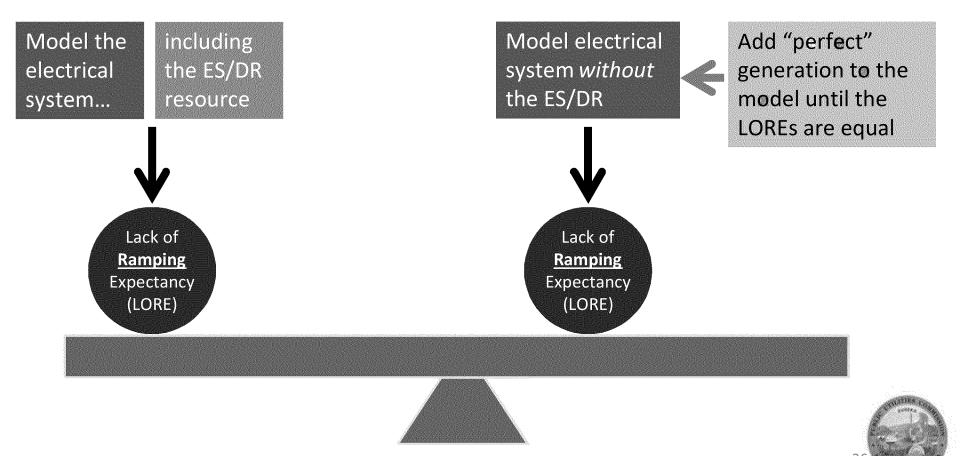
- Eligibility Criteria and Aggregation
- >Testing and Certification
- Deterministic Alternatives

> Next Steps





## Effective Flexible Capacity (EFC) reflects meeting of ramping needs


- Quantifies the effective MW a resource contributes towards avoiding reliability events caused by inability to meet short term/intra-hour ramping needs
- Based on an ES or DR resource's demonstrated maximum output, P<sub>max</sub>, and minimum output, P<sub>min</sub>
- Derated by the resource's effective ramping capability, ERC (usefulness factor), to take into account resource performance and use limitations





EFC > ERC Calculation

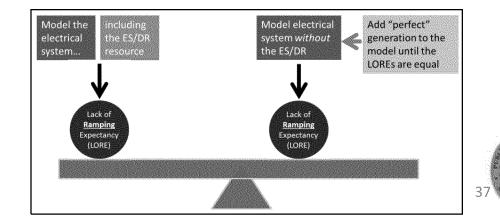
## ERC is similar to ELCC, but based on ramping-related reliability events





EFC > ERC Calculation

# ERC is similar to ELCC, but may include dispatchable load/charging (P<sub>min</sub>< 0)


#### Perfect MW Added

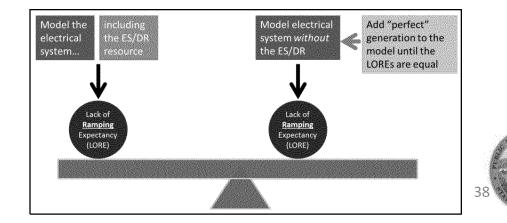
Resource P<sub>max</sub> – P<sub>min</sub> (MW)

Notes:

ERC

- P<sub>min</sub> is only included if it is negative.
   Otherwise, a minimum output of zero MW (i.e., not dispatched) is used.
- 2. The perfect generator is positive only.





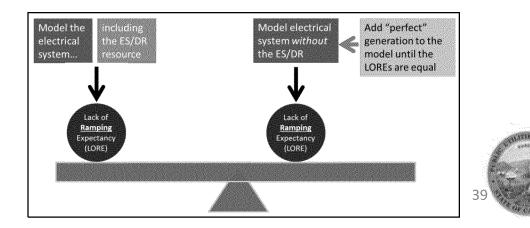

### EFC is equal to the resource MW range derated by its ERC ("usefulness")

### $EFC = Resource P_{max} - P_{min} (MW) \times ERC (\%)$

Notes:

- P<sub>min</sub> is only included if it is negative.
   Otherwise, a minimum output of zero MW (i.e., not dispatched) is used.
- 2. The perfect generator is positive only.






 $EFC = Resource P_{max} - P_{min} (MW)$ 

# EFC is equal to the resource MW range derated by its ERC ("usefulness")

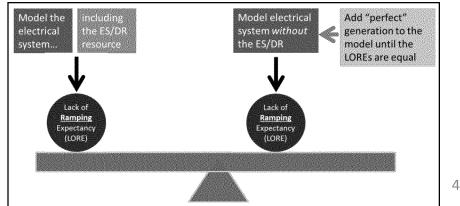


- P<sub>min</sub> is only included if it is negative. Otherwise, a minimum output of zero MW (i.e., not dispatched) is used.
- 2. The perfect generator is positive only.



Perfect MW Added

Resource P<sub>max</sub> – P<sub>min</sub> (MW)




### EFC is equal to the resource MW range derated by its ERC ("usefulness")

#### EFC = Perfect MW Added

Notes:

- P<sub>min</sub> is only included if it is negative.
   Otherwise, a minimum output of zero MW (i.e., not dispatched) is used.
- 2. The perfect generator is positive only.







EFC > EFC Formula

### EFC is equal to the resource MW range derated by its ERC ("usefulness")

### $EFC = ERC * (P_{max} - P_{min}), \qquad P_{min} < 0$

### $EFC = ERC * P_{max}, \qquad P_{min} \ge 0$





# Co-located ES is not given an EFC; it modifies that of the primary generator

### EFC = ERC \* P<sub>max,primary</sub>

Note:

1. P<sub>min</sub> is excluded because it is assumed that the primary generator does not have negative P<sub>min</sub>.





# Negative P<sub>min</sub> Wrinkle: ERC may be greater than one, and EFC > QC

| What is the<br>impact of<br>including<br>negative P <sub>min</sub><br>in EFC but<br>not in QC? | <ul> <li>QC is proportional to P<sub>max</sub>, while EFC is proportional to P<sub>max</sub> – P<sub>min</sub>, for P<sub>min</sub> &lt; 0</li> <li>It is very likely that EFC &gt; QC for ES and for DR with dispatchable load</li> <li>Depends on the ELCC and ERC deratings and the magnitude of P<sub>min</sub></li> <li>This makes intuitive sense: a greater operational range is able to contribute to meeting ramping needs than to meeting peak needs</li> <li>Currently, EFC &gt; QC is not permitted; this would need to be addressed in a decision</li> </ul> |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What if<br>negative<br>generation is<br>more useful<br>than positive<br>generation?            | <ul> <li>Perfect generation is positive only, while ES and DR can be &lt; 0</li> <li>If negative generation is inherently more "useful" than positive generation in meeting ramping needs, then ERC could be &gt; 1</li> <li>This is very unlikely to occur; if it does, we will explore further</li> </ul>                                                                                                                                                                                                                                                               |





### Agenda

> Scope

- Probabilistic Modeling
- > Qualifying Capacity
- Effective Flexible Capacity

#### Eligibility Criteria and Aggregation

- >Testing and Certification
- > Deterministic Alternatives

> Next Steps





# ES and DR should meet existing and planned RA & CAISO eligibility criteria

#### System RA

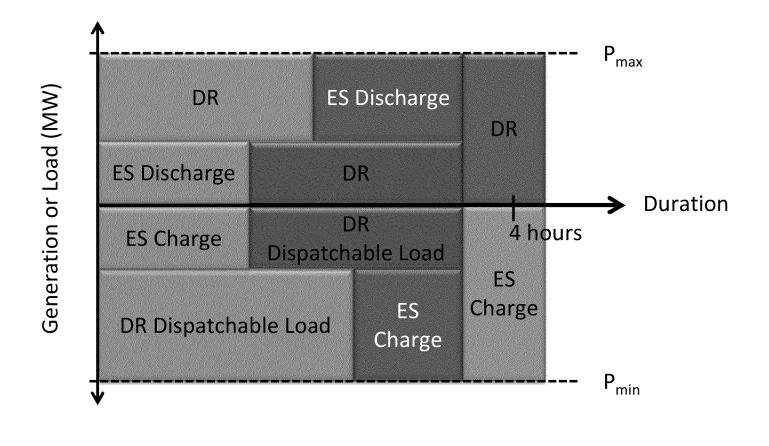
- At least 4-hour duration for P<sub>max</sub> and P<sub>min</sub> (in aggregate)
- Ability to operate over three consecutive days
- Must-offer obligation (MOO): may either bid into CAISO or self-schedule

#### Local RA

- At least 4-hour duration for P<sub>max</sub> and P<sub>min</sub> (in aggregate)
- Ability to operate over three consecutive days
- Must-offer obligation (MOO): may either bid into CAISO or self-schedule

#### **Flexible RA**

- Ability to ramp or sustain output for at least three hours (in aggregate)
- Must-offer obligation (MOO): must bid into CAISO markets during one of two intervals
  - 6:00-11:00 am
  - 4:00-9:00 pm


Co-located storage need only meet the MOO independently; the primary generator must be independently RA-eligible & at the same transmission node





Aggregation > Introduction

# ES and DR programs may be aggregated to meet RA requirements







# Rules should be flexible yet still aligned with RA and CAISO goals & constraints

- Resources located in the same service territory may be aggregated for System and Flexible RA
- Local RA resources can only be aggregated if at the same transmission node and dispatchable by Local Capacity Area
- Aggregated resources will receive a single Resource ID
  - The resources can nevertheless be modeled separately in the reliability calculator
  - If one element is charging or rebounding while another is discharging or curtailing, the impacts cancel one another out
- Aggregation must take into account use limitations such as hours of non-availability

Please share the regional granularity you consider appropriate for aggregation and provide feedback on Resource ID aggregation





### Agenda

> Scope

- Probabilistic Modeling
- > Qualifying Capacity
- Effective Flexible Capacity
- Eligibility Criteria and Aggregation

#### Testing and Certification

> Deterministic Alternatives

> Next Steps





# Energy Storage must be tested to fully demonstrate RA eligibility

- ES operators must submit test data to the CAISO showing output at P<sub>max</sub> and P<sub>min</sub> over the full four-hour duration required for RA eligibility
  - Co-located storage need not meet the four-hour duration requirement
  - Individual units may be aggregated to meet the eligibility criteria
- It is assumed that ES is capable of operating over three consecutive days by recharging at times that do not increase LOLE
- Other physical/operating characteristics must also be submitted (similar to master file data for conventional resources), such as efficiency and available energy





### We look forward to parties' input on:

- Other characteristics (manufacturer, test, or historical data) that should be submitted
- Whether and how it would be appropriate to apply a performance uncertainty when modeling less-proven technologies and/or newer units
- What type of ramping capability testing is appropriate, particularly considering the transition from charge to discharge





### ES Wrinkle: ELCC, ERC may be above 1;

### results in QC > P<sub>max</sub>, EFC > (P<sub>max</sub> - P<sub>min</sub>)

P<sub>max</sub> may be significantly lower than the short-term maximum power output; likewise, P<sub>min</sub> may be significantly below maximum possible charging

- Occurs if short-term max/min cannot be sustained over the four hours needed for RA eligibility
- $\bullet$  Other resources have short-term "emergency" ratings above  $P_{\rm max}$ , but with ES this mode is more likely to be economically dispatched

The model may frequently dispatch the unit for intervals under four hours

 $\bullet$  If so, dispatch may be significantly above  $P_{max}$  or below  $P_{min}$ 

More than P<sub>max</sub> MW of perfect generation may be needed to achieve the same LOLE as with the ES, if ES dispatch is usually above P<sub>max</sub>

- This also depends on how useful the resource is, in light of other operating characteristics
- This would result in ELCC > 1, because ELCC = Perfect MW / Resource  $P_{max}$
- $\bullet$  Similar logic applies to LORE and ERC, except that the range is  $P_{max}$   $P_{min}$

#### If ELCC > 1, then QC > $P_{max}$ ; if ERC > 1, then EFC > ( $P_{max} - P_{min}$ )





# DR P<sub>max</sub> and P<sub>min</sub> will be based on testing and Load Impact Protocols

| Test Duration                                                                              | Two hours                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Participants                                                                          | A representative sample, or all participants                                                                                                                                                                                                                                                   |
| Initial Processing and Adjustment                                                          | Simplified Load Impact Protocols (LIPs) will continue to be<br>used to determine P <sub>max</sub> , the maximum resource potential (1 in<br>10); they will also be used to determine P <sub>min</sub> .<br>Adjustments will consider temperature, time of year, and<br>other relevant factors. |
| Submission and Certification                                                               | Test data and LIPs will be submitted to the CAISO and the CPUC; adjustments will be conducted by the CPUC in approving the resource's P <sub>max</sub> and P <sub>min</sub>                                                                                                                    |
| <b>Ongoing Adjustment</b><br>(due to participant turnover and<br>commitment modifications) | If the contracted MW changes from one year to the next, the DRP must inform the CAISO; P <sub>max</sub> and P <sub>min</sub> will be revised by the CPUC, utilizing the LIPs                                                                                                                   |
| Ongoing Testing                                                                            | If a resource is not called for an entire year, it must be retested                                                                                                                                                                                                                            |

Please provide input on what type of ramping capability testing is appropriate, particularly considering dispatchable load  $\rightarrow$  curtailment transition (when applicable)





# Other parameters based on program design and DR historical performance

- Modeling will incorporate program design parameters such as hours of availability and dispatch triggers
- Performance of similar programs will be taken into account in estimating likely resource performance, in the absence of program-specific historical data
- As historical data accumulates, it will be incorporated into the modeling (going back 3 years)
  - Historical data will also be processed using simplified LIPs
  - To ensure a reasonable sample size, this data will only be included after ten dispatches





### We look forward to parties' input on:

- What guidelines are appropriate in applying similar program performance to the modeling of new programs
- Whether and how it would be appropriate to apply a performance uncertainty when modeling less-proven program types, newer resources, and/or participant turnover
- How DR can/should be held accountable for performance given that Standard (Flexible) Capacity Product rules (SCP and SFCP) do not currently apply to DR
- Test duration (different rules for different applications?)
- The continuing use of simplified load impact protocols





### Agenda

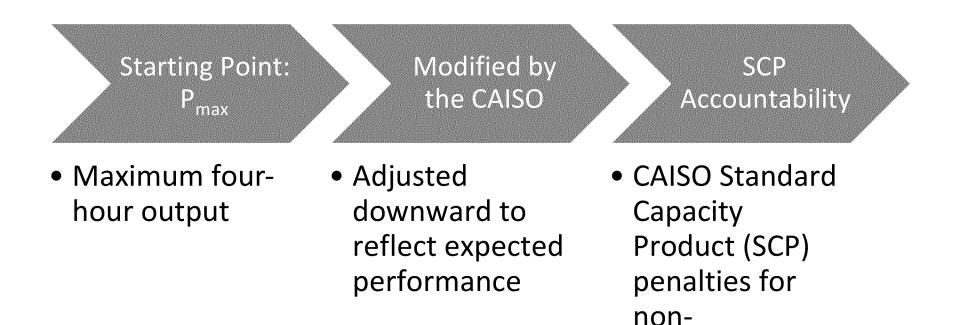
- > Scope
- ➢ Probabilistic Modeling
- > Qualifying Capacity
- Effective Flexible Capacity
- Eligibility Criteria and Aggregation
- > Testing and Certification
- Deterministic Alternatives
- > Next Steps





# Deterministic QC and EFC could utilize a similar framework to that proposed

Many of the proposed regulations could be implemented without probabilistic modeling:


- RA eligibility and CAISO market participation
- Testing and certification
- Aggregation
- QC based on P<sub>max</sub>
- EFC incorporating operation at negative P<sub>min</sub> (dispatchable load/charging)
  - Would require removing the current limit of EFC < NQC</li>





**Deterministic Alternatives > ES** 

### Storage QC could be calculated in the same manner as for fossil plants



performance





**Deterministic Alternatives > ES** 

# Storage EFC calculations could be similar to those for fossil plants

| Proposed ES<br>EFC rules                                      | <ul> <li>EFC = Minimum of (NQC – P<sub>min</sub>) and (180 minutes * Average Ramp Rate)</li> <li>Negative P<sub>min</sub> assumed</li> <li>EFC &gt; NQC permitted</li> <li>CAISO Standard Flexible Capacity Product non-performance penalties</li> </ul> |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conventional<br>formula, for<br>start-up time<br>SUT > 90 min | <ul> <li>Assume facility begins at P<sub>min</sub></li> <li>EFC = Minimum of (NQC-P<sub>min</sub>) and (180 minutes * Average Ramp Rate)</li> </ul>                                                                                                      |
| Conventional<br>førmula, for<br>start-up time<br>SUT < 90 min | <ul> <li>Assume facility begins off</li> <li>EFC = Minimum of (NQC) and (P<sub>min</sub> + (180 minutes – SUT) * Average Ramp Rate)</li> </ul>                                                                                                           |





# Co-located ES: independent or modifying the performance of the primary unit

| Independently<br>RA-Eligible ES     | <ul> <li>Co-located ES would be separately qualified for RA as stand-alone storage</li> <li>The co-located ES would receive its own Resource ID, QC, and EFC</li> </ul>                                                                                   |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Not<br>Independently<br>Eligible ES | <ul> <li>ES would not receive its own Resource ID, QC, or EFC</li> <li>ES would modify performance of the primary facility</li> <li>The QC and EFC of the primary facility would change as historical data (including the ES unit) accumulated</li> </ul> |





Existing Retail DR QC methodologies could be applied to Supply-Side DR

- The QC for current Retail DR programs is calculated using the Load Impact Protocols (LIPs)
- These LIPs could continue to be used (including CPUC adjustments)
- Non-performance would be reflected in future years' QC allocations



### Existing conventional EFC methodologies could be adapted to DR

- P<sub>min</sub> < 0 and EFC > NQC permitted
- Start-up time > 90 min or  $P_{min} \le 0$ :
  - EFC = Minimum of (NQC-P<sub>min</sub>) and (180 minutes \* Average Ramp Rate)
- Start-up time SUT < 90 min, and P<sub>min</sub> > 0:
  - EFC = Minimum of (NQC) and (P<sub>min</sub> + (180 minutes SUT) \* Average Ramp Rate)
- CAISO Standard Flexible Capacity Product nonperformance penalties (under development)





### Agenda

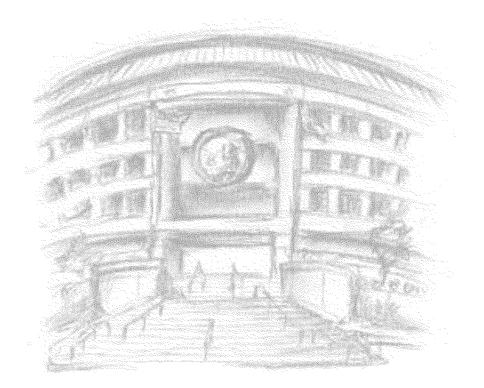
- > Scope
- ➢ Probabilistic Modeling
- > Qualifying Capacity
- Effective Flexible Capacity
- Eligibility Criteria and Aggregation
- >Testing and Certification
- > Deterministic Alternatives

#### ➢ Next Steps



**Next Steps** 

### Next Steps: Comments and Iteration


- Informal comments are due October 22, 2013

   joanna.gubman@cpuc.ca.gov
- A formal proposal will be published in December, with workshop to follow in January
- The broader ELCC initiative will be proceeding in parallel, including:
  - Workshop on modeling assumptions in November
  - Study with preliminary results in December
  - Workshop and formal comments in January





Thank you! For Additional Information: <u>WWW.CPUC.Ca.gov</u> (Search: Resource Adequacy History)



