

Revisions: Qualifying Capacity and Effective Flexible Capacity for Storage & Supply-Side DR

April 9, 2014 Resource Adequacy | Joanna Gubman

California Public Utilities Commission

Storage and DR resources may still be aggregated, but not with one another

- Several parties seemed concerned about the implementation of storage + DR aggregation and wanted more time to consider how this would work or what implications it might have
- Staff looks forward to revisiting this option in the future

DR Providers can pick a three-month testing window for Flexible RA

- Flexible RA DR Provider can pick which three month window
- CAISO can pick which date and time, as long as the time chosen falls into the resource's FRAC-MOO must-offer time window
 - System RA resource operators can self-schedule their test dates and times
- CAISO must provide advance warning in compliance with the resource's tariff
 - For example, a DR resource that is entitled to at least 30 minutes of notice in its tariff should receive at least 30 minutes notice of testing
- Resources offering both load curtailment and load increase must demonstrate both capabilities in testing

EFC: Yes, the methodology is complicated. But...

- System and Flexible RA are bundled for all other resources, and we want to be consistent
- We don't want anyone to game the system
- For fast-ramping resources, a lot of the complexity goes away
- It is simpler in pictures
- Flexibility is in an interim stage; we anticipate revisiting the methodology in future years

Nomenclature: Positive and Negative Generation

- Positive generation means discharge or load curtailment
- Negative generation means charge or load increase
- Both types need to be dispatchable by the CAISO to count as RA

Nomenclature: Power Output (in MW)

- Pmax a resource's maximum rated power output
- Pmax_{RA} the maximum output sustainable for four hours; may be less than Pmax
- **Psupply**_{min} the minimum discharging or load curtailment sustainable for 3+ hours; only applicable to resources with positive generation
 - e.g., minimum dispatch level for a DR resource
- Pdemand_{min} a negative number representing the smallest magnitude of charging or load increase that is sustainable for the duration required in calculating EFC; only applicable to resources with negative generation
 - e.g., minimum pumping loads
- Pmin_{RA} either equal to Psupply_{min} for resources with only positive operating ranges, or a negative number representing the largest magnitude of charging or load increase eligible for consideration in calculating EFC
- Pmin a resource's minimum rated output; may be a positive or negative number, and is less than or equal to Pmin_{RA}

EFC is how much a resource can ramp or sustain output over 3 hours, up to NQC

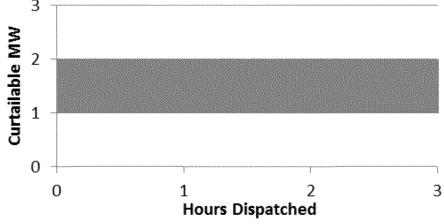
 Let's start by looking at resources with very fast ramp rates

EFC for Fast-Ramping Resources

- Positive-generation resources (treated the same as other resource types):
 - EFC = NQC, if start-up time < 90 minutes
 - EFC = NQC Pmin_{RA}, if start-up time > 90 minutes
- Negative-generation resources:
 - $EFC = -Pmin_{RA}$
- Bi-directional resources:
 - EFC = NQC Pmin_{RA}

EFC is how much a resource can ramp or sustain output over 3 hours, up to NQC

But what is the starting point? How is Pmin_{RA} determined?

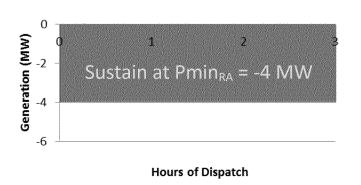


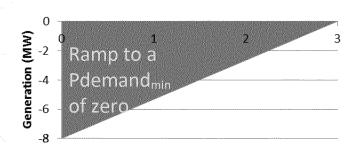
Positive generation resources: $Pmin_{RA}$ is the minimum sustainable 3-hr output

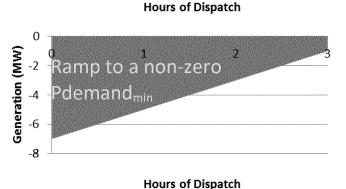
- Equivalent to Psupplymin
- May be zero, if there is no minimum output constraint

Don't forget, Pmax_{RA} is unchanged from the QC

calculation



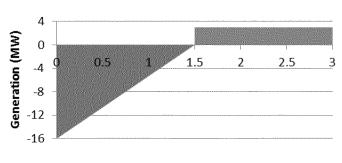

An example DR resource with $Pmin_{RA} = Psupply_{min} = 1 MW$

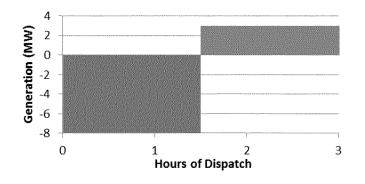


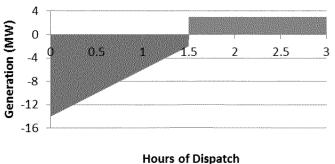
Negative gen: $Pmin_{RA}$ is the starting point to sustain output or ramp to $Pdemand_{min}$

- Limited by energy available to sustain or ramp at a constant rate for three hours
 - Examples: three resources, all with-12 MWh available

Bi-directional resources: Pmin_{RA} same as negative gen, except 1.5-hour basis

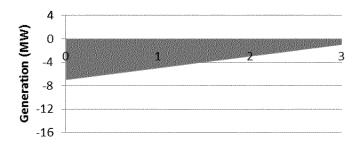

- $Pmin_{RA}$ is the starting point to sustain output or ramp to $Pdemand_{min}$
- Limited by energy available to sustain or ramp at a constant rate for 1.5 hours
- The other 1.5 hours of flexible operation are fulfilled by the capability to output at $Pmax_{RA}$ for 1.5 hours
 - Pmax_{RA} remains unchanged; still based on constant 4hour output

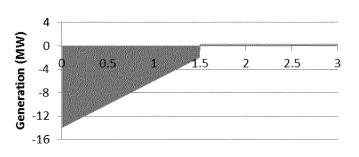



Bi-directional resources: $Pmin_{RA}$ same as negative gen, except 1.5-hour basis

Examples: three resources, all with 12 MWh available and 100% round-trip efficiency

Hours of Dispatch


Bi-directional resources: transition time and discontinuity at zero are OK


- Staff proposes up to 45 minutes as acceptable transition time. Please address in comments!
- Transition discontinuity means $Pdemand_{min}$ and $Psupply_{min}$ can be non-zero
- The above characteristics are inconsistent with CAISO's NGR tariff as staff understands it
- Transition time does not count towards the three hours of operation – no gaming

Bi-directional resources: approximate symmetry proposed, to limit gaming

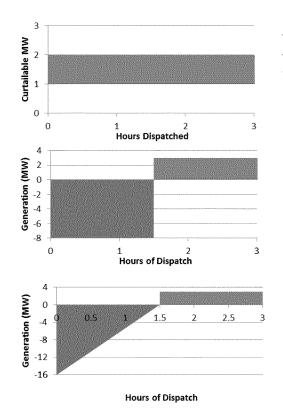
- Staff proposes that available negative energy not exceed twice the available positive energy (equivalent to a round-trip efficiency of 50%)
 - Feedback requested as to whether parties find this to be a reasonable percentage

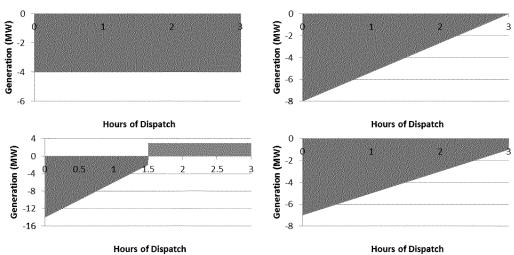
Hours of Dispatch

Hours of Dispatch

Example: Absent a symmetry rule, an "aggregate" resource could inflate its EFC

EFC for Fast-Ramping Resources


- Positive-generation resources (treated the same as other resource types):
 - EFC = NQC, if start-up time < 90 minutes
 - EFC = NQC Pmin_{RA}, if start-up time > 90 minutes
- Negative-generation resources:
 - $EFC = -Pmin_{RA}$
- Bi-directional resources:
 - EFC = NQC Pmin_{RA}



EFC for Fast-Ramping Resources

Top MW minus bottom MW in relevant chart*

*Except the positive generation resource, which may just be Top MW, if start-up time is under 90 minutes. And all top numbers are subject to deliverability limitation (NQC).

Slower-ramping resources: EFC range is limited to what is physically possible

- Complicates the EFC formula, but conceptually similar to having a larger-magnitude Pdemand_{min}
- Use weighted average ramp rates (MW/min)
 - $ARR_{pos} = \frac{Pmax_{RA} Psupply_{min}}{Time to ramp up from <math>Psupply_{min}$ to $Pmax_{RA}$
 - $ARR_{neg} = \frac{Pdemand_{min} Pmin_{RA}}{Time to ramp up from <math>Pmin_{RA}$ to $Pdemand_{min}$

EFC for Fast-Ramping Resources

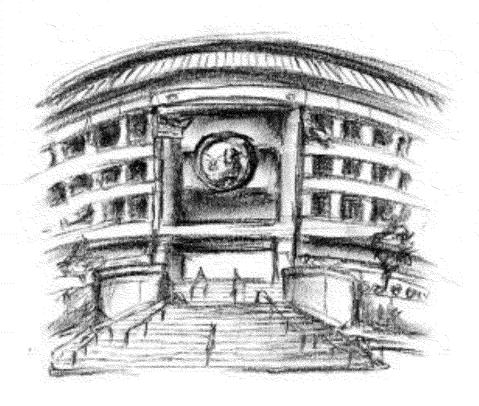
- Positive-generation resources:
 - EFC = NQC, if SUT < 90 minutes
 - EFC = $NQC Pmin_{RA}$, if SUT > 90 minutes
- Negative-generation resources:
 - $EFC = -Pmin_{RA}$
- Bi-directional resources:
 - EFC = $NQC Pmin_{RA}$

- Positive-generation resources:
 - EFC = Minimum of (NQC) and (Pmin_{RA} + (180 minutes Start-up Time) * ARR_{pos}), if SUT < 90 minutes
 - EFC = Minimum of (NQC Pmin_{RA}) and (180 minutes * ARR_{pos}), if SUT > 90 minutes
- Negative-generation resources:
 - EFC = Minimum of (Pdemand_{min} Pmin_{RA}) and (180 minutes * ARR_{neg}), plus the absolute value of Pdemand_{min} iff 180 – (Pdemand_{min} – Pmin_{RA})/ARR_{neg} ≥ shut-down time (SDT)
- Bi-directional resources:
 - EFC = Minimum of (NQC) and (Psupply_{min} + 90 min * ARR_{pos}) + Minimum of (− Pmin_{RA}) and (− Pdemand_{min} + 90 minutes * ARR_{neg})

- Positive-generation resources:
 - EFC = Minimum of (NQC) and (Pmin_{RA} + (180 minutes Start-up Time) * ARR_{pos}), if SUT < 90 minutes
 - i.e., start up, get to Pmin_{RA}, and ramp up as much as possible in the remainder of the three hours
 - EFC = Minimum of (NQC Pmin_{RA}) and (180 minutes * ARR_{pos}), if SUT > 90 minutes
 - i.e., start at Pmin_{RA} and ramp up for three hours

- Negative-generation resources:
 - EFC = Minimum of (Pdemand_{min} Pmin_{RA}) and (180 minutes * ARR_{neg}), plus the absolute value of Pdemand_{min} iff 180 – (Pdemand_{min} – Pmin_{RA})/ARR_{neg} ≥ shut-down time (SDT)
 - i.e., ramp up as much as possible over three hours from Pmin_{RA} towards Pdemand_{min}; if there's enough time remaining in the three hours, shut down and get to zero

- Bi-directional resources:
 - EFC = Minimum of (NQC) and (Psupply_{min} + 90 min * ARR_{pos}) + Minimum of (− Pmin_{RA}) and (− Pdemand_{min} + 90 minutes * ARR_{neg})
 - i.e., ramp up for 1.5 hours to get to Pdemand_{min}; transition to Psupply_{min}, and ramp for another 1.5 hours



Thank you! For Additional Information:

www.cpuc.ca.gov

(Search: Resource Adequacy History)

