PACIFIC GAS AND ELECTRIC COMPANY

CALIFORNIA GAS TRANSMISSION
GAS SYSTEM MAINTENANCE & TECHNICAL SUPPORT
SYSTEM INTEGRITY SECTION
Risk Management

Procedure for Risk Management

Procedure No. RMP-02 Rev. 0 External Corrosion Threat Algorithm

**************************************	 	0100000000000000000000000000000000000		 	Approved
Ray, No.	Date	Tescapion	Piopwed By	Approved By	1 ' '
0		Initial Issue	DJC	р	
j.					
2	VIX	**************************************		i	COMMISSION CONTRACTOR OF THE C
3					
400	, , , , , , , , , , , , , , , , , , ,			}	
Security is an executive of	//dea/ # 1000000000				
generalment	- Andrewson and Andrewson a		рознативности	Домунууры үштүктүүн	<u> </u>

4

4.0 EC THREAT ALGORITHM

1.0 PURPOSE

The purpose of this procedure is to provide a guideline for determining the External Corrosion Threat Algorithm for the determination of Likelihood of Failure and Risk for California Gas Transmission's (CGT) Risk Management Program (RMP).

2.0 SCOPE

This guideline is applicable to all of CGT's gas transmission pipeline facilities and is to be used in conjunction with RMP Procedure 01. The algorithm provided in this procedure is for Pipelines. It is not applicable to regulator, compressor, or storage station facilities

The RMP is responsible for managing risk within the scope of this procedure. The RMP shall establish and manage the risk of each pipeline facility by utilizing industry and regulatory accepted methodologies appropriate for PG&E's CGT facilities and shall be in conformance with this procedure. The Lead Risk Management Engineer shall be responsible for compliance with this procedure.

3.0 INTRODUCTION

The RMP is a process of calculating risk, developing risk mitigation plans to bring and maintain risk within an acceptable risk profile, and monitoring risk to accommodate changes in the factors which affect risk. (Procedure RMP-01 provides a guidelines for the Risk Management Process.) This procedure supports the calculation of risk, required by Procedure RMP-01, due to one of the basic threats imposed on gas pipelines, External Corrosion (EC).

As described in RMP-01, Risk is defined as the product of the Likelihood of Failure (LOF) and the Consequence of Failure (COF). A relative risk calculation methodology is used to establish risk for all pipeline segments within the scope of RMP-01. The method used to calculate risk is based on an index model and qualitative scoring approach. Likelihood Of Failure (LOF) is defined as the sum of the following threat categories: External Corrosion (EC), Third Party (TP), Ground Movement (GM) and Design/Materials (DM).

Each threat category is weighted in proportion to PG&E and industry failure experience. EC is weighted at 25%. The weightings on the threat categories will be reviewed and approved annually by the Consequence Steering Committee. For each threat category, the appropriate steering committee will identify the algorificant factors that influence the threat's likelihood of failure. For each factor, a percentage weighting will be established to identify the factor's relative significance in determining the threat's likelihood of failure within the threat algorithm. Points will be established based on criteria that the committee feels is significant to determining the threat's likelihood of failure due to each factor and the relative severity of failure (leak-before-break vs. rupture). (Negative points may be assigned where current assessments have been made to confirm pipeline integrity and/or mitigation efforts have eliminated or lowered susceptible to a threat.) Generally, the summation of the percentage weightings for all of the factors within each threat will be

100%. (There may be exceptions to permit the consideration of very unusual conditions.) For the threat of EC, the scoring is based on direction from the EC Steering Committee.

4.0 EC Threat Algorithm

Scoring for the External Corrosion (EC) threat algorithm shall be calculated per the direction of the EC Steering Committee. The committee has determined that the factors in A through M of this section are significant for determining the Likelihood of Fallure (LOF) of a gas pipeline due to EC. The EC contribution to LOF shall be the summation of assigned points times the assigned weighting of the following factors:

A) Soil Resistivity (4% Weighting); Points will be awarded as follows:

Criteria (control de la control de la contro	Points	Contrib.
Less than or equal 500 Ohm-Centimeters	100	Ą
501 to 1000 Ohm-Centimeters	80	3.2
1001 to 2000 Ohm-Centimeters	60	2.4
2001 to 4000 Ohm-Centimeters	40	1.6
4001 to 10,000 Ohm-Centimeters	20	0.8
Above 10,000 Ohm-Centimeters	10	0.4

The Corrosion Engineer will report areas of High Soli Resistance to the RMP.

B) Close Interval Criteria (5% Weighting): Points will be awarded as follows:

allefer Allefighter dame Critoria	∵Foints ∵	Contrib.
No CIS*/ readings	50	2.5
CIS & meets criteria for acceptance	-100	-5
CIS & does not meet acceptance criteria	300	15

^{*} CIS - (Close Interval Survey) This information is provided to the RMP by the Corrosion Engineer and, if acceptable, is considered valid for ten years. If the CIS does not meet acceptance criteria, it is valid until repeated.

C) Coating Visual Inspection (10% Weighting): Points awarded as follows:

Criteria	Points	Contrib
Severely disbonded, bare (Poor)	100	10
Locally damaged, disbended (Fair)	50	5
Superficial damage only (Good)	20	2
Intact and bonded (Excellent)	10	1
No visual inspection performed*	50	5

^{*} DEFAULT. If there has been no inspection, use this value, Inspection data greater than 20 years old shall not be used unless the information reflects a condition that is fair or poor. In such cases, points will be awarded per the inspection regardless as to when the inspection was performed.

D) Casing Survey (10% Weighting): Points awarded as follows:

Criteria Criteria	Points	Contrib.
No casing	Q	0
Metallic Short	100	10
Electrolytic Short	70	7
Electrolytic Short P/S OK	40	4
No data about existing casing	70	7

E) Magnetic Flux or Ultrasonic Inspection (5% Weighting): Points awarded as follows:

post Application (Criterial Application of the	Points	Contrib.
No survey performed	0	0
Inspection > 10 years old	-100	-5
Inspection 5 to 10 years old	-300	-15
Inspection 2 to <5 years old	-600	-30
Inspection <2 years old	-600	-30

F) External Corrosion Leak Rate (10% Weighting); Points awarded as follows:

Criteria : ::	::Points	Contrib.
ែ or more leaks per leak age	100	10
0.5 to <1 leaks per leak age	80	8
>0 to <0.5 leaks per leak age	50	5
0 leaks	Q	0

G) Coating Design (10% Weighting): Points awarded as follows:

Cirilera e como de la Cirileria	Points	Contrib.
Uncoeled	100	10
HAA	50	5
Extruded	100	10
Coal Tar	100	10
Somastic/Conc	30	3
Tape	100	10
Paint	50	5
FBE	10	í
Powercrete (PC)	10	į

H) DC/AC Interference (9% Weighting): Points awarded as follows:

- W W		
Criteria (1999)	Points	Contrib.
High or medium voltage within 500' of a	100	ម
Gas Pipeline without Cathodic Protection		
High or medium voltage w/i 500' w/CP	50.	4.5
No high or medium voltage	0	Q

1) Coating Age (5% Weighting): Points awarded as follows:

Selection Specialis (Griterie m processing selection)	:::Points:::	::Contrib::::
>30 years or uncoated	100	5 }
>20 to 30 years	80	4
>10 to 20 years	30	1.5
10 years or less	10	0.5

J) MOP vs. Pipe Strength* (9% Weighting): Points awarded as follows:

[2] Problem of Criteria	Points	Cantrib.
୍ଚି > ୫ 0%	100	9
50% to 60%	89	7.2
{ 40% to <50%	50	4.5
30% to <40%)	30	2.7
20% to <30%	10	0.9
Less than 20%	5	3.45

Pipe Strength shall be determined to be equal to (SMYS)(2)(t)(Jef)/(OD).

K) Pips Visual Inspection (8% Weighting): Points awarded as follows:

Criteria	Points	Contrib;
Heavy pitting or gauging (Poor)	100	8
Light pitting or gouging (Fair)	50	Ą
Heavy resting	20	1.6
Light rusting (Good)	10	9,8
No pitting or rusting (Excellent)	0	Ö
No visual Inspection performed*	50	4

DEFAULT, If there has been no inspection, use this value. Inspection data greater than 20 years old shall not be used unless the information reflects a condition that is fair or poor. In such cases, points will be awarded per the inspection regardless as to when the inspection was performed.

L) Pressure Testing (5% Weighting): Points awarded as follows:

	-: Points:	Contrib
No Records Available	0	0
Tests within last 5 years	~200 :	-10
Tests performed >5 to 15 years ago	-100	-5
Tests performed more than 15 years ago	0	9

M) External Corrosion Direct Assessment (ECDA) (Weighting 10%) Points awarded as follows:

Criteria	Roints	Contrib.
ECDA Completed*	-100	-10
ECDA Not Campleted	٥	0

^{*} ECDA must have been completed within the last ten years.