Integrity Management Program PHE material redacted GTR0007117 # PACIFIC GAS AND ELECTRIC COMPANY CALIFORNIA GAS TRANSMISSION GAS SYSTEM MAINTENANCE & TECHNICAL SUPPORT SYSTEM INTEGRITY SECTION Risk Management # **Procedure for In-Line Inspections** Procedure No. RMP-11 # Integrity Management Program | Prepared By: | Con Consultant Francisco | Date: 6-17-04 | |--------------|--------------------------------------|---------------| | | Gas Consultant Engineer | | | Reviewed By: | | Date: 6-17-04 | | • | Integrity Management Program Manager | | | Reviewed By: | | Date: 6-18-04 | | • | In-Line Inspection Program Manager | | | Approved By: | | Date: 7-1-04 | | - | Manager, System Integrity | | | | | | | | Approved | |-------------|----------|---------------|-------------|-------------|---------------------------| | Rev.
No. | Date | Description | Prepared By | Reviewed By | Manager, System Integrity | | 0 | 7-01-04 | Initial Issue | | | | | 1 | 10-13-05 | Revision 1 | | | | | 2 | 6-10-08 | Revision 2 | # **Table of Contents** | 1.0 | PURPOS | E | 4 | |-----|-----------|---|----| | | 1.1 | REVISION: | 4 | | 2.0 | INTRODU | UCTION | 4 | | | 2.1 | ILI METHODOLOGY | 4 | | | 2.2 | ROLES AND RESPONSIBILITIES | 4 | | | 2.3 | QUALIFICATION AND TRAINING REQUIREMENTS | 5 | | | 2.4 | RECORD RETENTION: | 5 | | | 2.5 | DEFINITIONS: THE FOLLOWING ARE DEFINITIONS OF SOME KEY TERMS USED IN THIS PROCEDURE | 5 | | 3.0 | PRE-ASS | ESSMENT | 6 | | | 3.1 | OBJECTIVES | 6 | | | 3.2 | PIPELINE SEGMENTS REQUIRING ILI | 6 | | | 3.3 | DATA COLLECTION (PRE-FIELD VISIT) | 7 | | | 3.4 | DATA ANALYSIS (PRE-FIELD VISIT) | 13 | | | 3.5 | FIELD VISIT | 13 | | | 3.6 | DATA FILING: | 13 | | | 3.7 | DATA ANALYSIS | 13 | | | 3.8 | FEASIBILITY ANALYSIS | 14 | | | 3.9 | ILI PRE-ASSESSMENT REVIEW MEETING(S) | 14 | | | 3.10 | PRE-ASSESSMENT REPORT | 14 | | | 3.11 | PIPELINE RETROFIT | 15 | | 4.0 | IN-LINE I | NSPECTION | 15 | | | 4.1 | OBJECTIVES: | 15 | | | 4.2 | SELECTION AND MARKING OF ABOVE-GROUND MARKERS (AGM) | 15 | | | 4.3 | PREPARATION FOR IN-LINE INSPECTIONS | 15 | | | 4.4 | IN-LINE INSPECTION FIELD OPERATIONS | 17 | | 5.0 | DIRECT | EXAMINATION | 18 | | | 5.1 | OBJECTIVE | 18 | | | 5.2 | IMMEDIATE ANOMALY DISCOVERY AND FINAL ILI VENDOR REPORT: | 18 | | | 5.3 | PRESSURE REDUCTION REVIEW PROCESS | 18 | | | 5.4 | IMMEDIATE ANOMALY INSPECTION/REPAIR PLAN | 20 | | | 5.5 | INSPECTION/REPAIR PLAN | 20 | | | 5.6 | FIELD EXAMINATION | 22 | | | 5.7 | MAOP RESTORATION REVIEW/CONCURRENCE | 27 | | | 5.8 | ROOT CAUSE ANALYSIS | 28 | | | 5.9 | RMP-11 FINAL REPORT | 28 | | | 5.10 | GIS ANOMALY DOCUMENTATION | 29 | | | 5.11 | DISTRIBUTION | 29 | | 6.0 | POST AS | SESSMENT | 30 | | | 6.1 | RE-INSPECTION INTERVALS. | 30 | | | 6.2 | DATA INTEGRATION | 30 | | 7.0 | EXCEPT | ON PROCESS | 31 | | , | 7.1 | EXCEPTION REQUIREMENTS: | 31 | | 8.0 | DOCUME | NTATION AND RECORD KEEPING | 32 | | ATT | ACHMEN | T A: DIRECT EXAMINATION PROCESS FLOW CHART | 34 | List of Tables | TABLE 3.3.1: | PRE-ASSESSMENT DATA LIST | 8 | |---|--|----------------------------------| | TABLE 3.5.1: | TYPICAL FIELD COLLECTED DATA | 13 | | TABLE 5.5.1: | IN-LINE INSPECTION TOOL ANOMALY PRIORITIZATION GUIDE | 21 | | TABLE 5.6.2: | DIRECT EXAMINATION DATA COLLECTION REQUIREMENTS | 24 | | TABLE 5.6.5: | MINIMUM PF TO JUSTIFY MAXIMUM RE-INSPECTION INTERVAL | 27 | | TABLE 6.1: | TIMING SCHEDULE RESPONSES - TIME DEPENDENT THREAT | 30 | | TABLE 8.0: | DOCUMENTATION AND RECORD KEEPING REQUIREMENTS | | | FIGURE 5.5.2; | List of Figures TIMING FOR SCHEDULED RESPONSES | 22 | | FORM A: DATA ELEM | Appendix | 37 | | | | | | FORM B: SUFFICIENT | T DATA ANALYSIS FORM | 41 | | FORM C: FEASIBILIT | T DATA ANALYSIS FORMY ANALYSIS FORMY ANALYSIS FORM | 41
42 | | FORM C: FEASIBILIT | T DATA ANALYSIS FORMY ANALYSIS FORM | 41
42
43 | | FORM C: FEASIBILIT
FORM D: ABOVE GRO
FORM E: ILI VENDOR | T DATA ANALYSIS FORM | 41
42
43 | | FORM C: FEASIBILIT
FORM D: ABOVE GRO
FORM E: ILI VENDOR
FORM F: IMMEDIATE | T DATA ANALYSIS FORM | 41
42
43
44 | | FORM C: FEASIBILIT
FORM D: ABOVE GRI
FORM E: ILI VENDOF
FORM F: IMMEDIATE
FORM G: ANOMALY I | T DATA ANALYSIS FORM | 4142434445 | | FORM C: FEASIBILIT
FORM D: ABOVE GRE
FORM E: ILI VENDOR
FORM F: IMMEDIATE
FORM G: ANOMALY I
FORM H: DIRECT EX. | T DATA ANALYSIS FORM | 414243444546 | | FORM C: FEASIBILIT
FORM D: ABOVE GRE
FORM E: ILI VENDOR
FORM F: IMMEDIATE
FORM G: ANOMALY I
FORM H: DIRECT EX.
FORM I: FIELD EXAM | T DATA ANALYSIS FORM | 41
43
44
45
46
47 | | FORM C: FEASIBILIT
FORM D: ABOVE GRE
FORM E: ILI VENDOR
FORM F: IMMEDIATE
FORM G: ANOMALY I
FORM H: DIRECT EX.
FORM I: FIELD EXAT
FORM J: (LEFT BLAN | T DATA ANALYSIS FORM | 414345454757 | | FORM C: FEASIBILIT
FORM D: ABOVE GRE
FORM E: ILI VENDOF
FORM F: IMMEDIATE
FORM G: ANOMALY I
FORM H: DIRECT EX.
FORM I: FIELD EXAN
FORM J: (LEFT BLAN
FORM K: ROOT CAUST | T DATA ANALYSIS FORM | 414345464757 | | FORM C: FEASIBILIT
FORM D: ABOVE GRE
FORM E: ILI VENDOR
FORM F: IMMEDIATE
FORM G: ANOMALY I
FORM H: DIRECT EXA
FORM I: FIELD EXA
FORM J: (LEFT BLAN
FORM K: ROOT CAU:
FORM L: (LEFT BLAN | T DATA ANALYSIS FORM | 414344454657 | #### References - ANST NO. ILI-PQ-2003 "IN-LINE INSPECTION PERSONNEL QUALIFICATIONS & CERTIFICATION" - 2. - API 1163 1ST EDITION "IN-LINE INSPECTION SYSTEMS QUALIFICATION STANDARD" NACE RP 0102-2002 "STANDARD RECOMMENDED PRACTICE, IN-LINE INSPECTION OF PIPELINES" - ASME B31.8S-2004 "MANAGING SYSTEM INTEGRITY OF GAS PIPELINES" 4. - 49 CFR PART 192, SUBPART O "PIPELINE INTEGRITY MANAGEMENT" 5. - **CGT CLEARANCE PROCEDURE \$4420** - 7. RMP-06 "INTEGRITY MANAGEMENT PROCEDURE" - 8. - UTILITY WORK PROCEDURE WP4100-05 "SELECTION OF GAS PIPELINE REPAIR METHODS" DCS/GTS STANDARD S4413 "CPUC AND DOT REPORTABLE INCIDENTS, CURTAILMENTS AND CONDITIONS AND LOW PRESSURE SYSTEM PROBLEM REPORTING" - 10. UTILITY WORK PROCEDURE WP4430-07 "ESTABLISHING SET POINTS ON OVERPRESSURE PROTECTION DEVICES" - 11. UO GUIDELINE G14413 "PROCEDURE FOR EXCAVATING PIPELINES AND SERVICES" #### 1.0 PURPOSE The purpose of this procedure is to describe the process of performing an In Line Inspection (ILI) on specified buried gas transmission pipeline segments. This procedure is in accordance with 49CFR Part 192, Subpart O – Pipeline Integrity Plan and ASME B31.8S-2001, Supplement to B31.8 on Managing System Integrity of Gas Pipelines. It provides instructions, guidance, and requirements to ensure consistent inspections, responses to anomalies and documentation of the ILI results. **1.1 Revision:** All changes in the Procedure shall follow RMP-06 Section 12 and be reviewed with all involved personnel whenever a revision is published. In case of conflict between RMP-06 and RMP-11, RMP-06 governs. #### 2.0 Introduction In-Line Inspection requires a structured process that is intended to improve safety by assessing and mitigating the pipeline integrity threats, such as, corrosion, mechanical damage, S.C.C, etc. By identifying and sizing anomalies in the pipeline, the ILI process seeks to proactively prevent anomalies from growing to sizes that are large enough to affect the structural integrity of the pipeline segments inspected. #### 2.1 ILI Methodology The ILI methodology is a four-step process that requires the integration of data from the In-Line Inspection, direct pipe surface examinations, and the pipe's physical characteristics. The four steps of the process are: **Pre-Assessment:** The Pre-Assessment step collects historic and current data to determine whether the ILI is feasible and what tool is appropriate and to assist in the interpretation and analysis of the inspection results. The types of data to be collected are typically available in GIS, transmission and distribution plat sheets, as-built job files, district and division records. This step also defines the work necessary to verify the pipeline segments are "piggable" or to make the segment "piggable." **In-Line Inspection:** The In-Line Inspection step covers the route preparation and pipeline cleaning. This step also includes performing In-Line Inspection runs and the data analysis by the vendor to identify and quantify the pipe wall anomalies. **Direct Examination:** The Direct Examination step includes reviewing of In-Line Inspection data to prioritize the anomalies for excavations and evaluations. Data from the direct examinations are utilized to verify the accuracy of the ILI results and evaluate the identified anomalies in regards to pipeline integrity. It also includes requirements of repairs, performing the root cause analysis, and the requirements of the RMP-11 Final Report. **Post-Assessment:** The Post-Assessment step covers analyses of data collected from the previous three steps and the development of a Post Assessment Plan to mitigate any significant deficiencies identified by the Root Cause Analysis and the ILI final report. The plan includes assigning re-inspection intervals and assessing/monitoring the overall effectiveness of the ILI process. #### 2.2 Roles and Responsibilities **Manager of Technical Services:** The Manager of Technical Services has the overall responsibility to ensure that this procedure is implemented effectively. This procedure is used to assign approval of documents, plans and exceptions to this procedure. The Manager of Technical Services may delegate some or all of these approving responsibilities. **ILI Program Manager:** The ILI Program Manager is responsible for ensuring that all aspects of
the ILI program are conducted in full compliance with this procedure. The Program Manager is responsible for overall compliance, budgeting, and resource planning necessary to implement the ILI program. **ILI Engineer (ILE):** The ILI Engineer is responsible for the implementation of all engineering aspects of this procedure included in the pre-assessment, in-line inspection, direct examination and post assessment phases. Senior Risk Management Engineer (SRME): The Senior Risk Management Engineer is responsible for the quality control of the ILI projects. This person will be the consultant to the ILI Team and Integrity Management Team for all ILI projects. This person is responsible for reviewing the critical interim phases and the RMP-11 Final Report for the compliance of this procedure and leads the team creating the Long Term Integrity Management Plan (LTIMP). **ILI Project Manager (PM):** A Project Manager will be assigned to manage each ILI project. This person is responsible for ensuring that all aspects of the assigned ILI project are performed in full compliance with this procedure. In addition, the Project Manager is responsible for effectively planning, documenting and communicating the various aspects and stages of the assigned ILI project. The project is the responsibility of the Project Manager until the final report is completed and formally transmitted to the Integrity Management Program Manager. **Integrity Management Program Manager (IMPM):** This person is responsible for ensuring the post assessment is completed for each ILI and the pipeline re-assessment interval is documented and scheduled. This person is also a resource to the ILI Program Manager for risk assessments **Corrosion Engineer (CE):** The Corrosion Engineer is responsible for the technical evaluation of direct examinations and preparing root cause analysis in accordance with this procedure. **Direct Examination Personnel:** The In-Line Inspection Personnel are responsible for performing direct examinations in accordance with this procedure and other testing procedures that have been referenced in the assessment process. #### 2.3 Qualification and Training Requirements The provisions of this procedure **shall** be applied under the direction of competent persons who, by reason of knowledge of the physical sciences and the principles of engineering and mathematics, acquired by education and related practical experience, are qualified to engage in the practice of pipeline engineering on transmission piping systems. The specific qualifications are described below. Manager of Technical Services: Qualifications and Training requirements covered in RMP-06 **ILI Program Manager:** The Program Manager **shall** be a degreed engineer with a minimum of 5 years of experience (or equivalent) performing In-Line Inspections in the pipeline industry. Additionally, the ILI Program Manager shall have a minimum of 5 years experience in either Pipeline Design, Operations or Integrity Management with a strong working knowledge of CFR 49 Part 192. Training: 1. Review of RMP-11 annually, 2. RSTRENG Training Course, 3. GT&D Corrosion Control Training Course, 4. Defect Assessment Course and 5. Industry Pigging Course **ILI Engineer (ILE):** The ILE **shall** be a degreed engineer and have a minimum of 1 year experience in Gas Distribution or Gas Transmission Engineering, Planning or Operations. The ILI Engineer shall work under the guidance and supervision of the ILI Program Manager. Training: 1. Review of RMP-11 annually, 2. RSTRENG Training Course, 3. GT&D Corrosion Control Training Course, 4. Defect Assessment Course and 5. Industry Pigging Course Sr. Risk Management Engineer (SRME): Qualifications and Training requirements covered in RMP-06 ILI Project Manager (PM): The PM shall have project management experience within the gas industry. Training: 1. Review of RMP-11 annually, 2. Project Manager Training per PG&E Project Manager Guidelines. Integrity Management Program Manager (IMPM): Qualifications and Training requirements covered in RMP-06 Corrosion Engineer (CE): Qualifications and Training requirements covered in RMP-06 **Direct Examination Personnel:** The personnel performing the direct examinations shall meet their employer's Operator Qualification requirements as well as being certified with supporting training documentation for the specific inspections they are conducting. - 2.4 Record Retention: All forms and reports created for the ILI run shall be on file for the life of the facility. - 2.5 Definitions: The following are definitions of some key terms used in this procedure **Shall:** Is a requirement that must be complied with or its exception approved and documented in accordance with Section 7.0 of this procedure. **Should:** Is a recommendation that is desirable to follow if possible. Not following the recommendation does not have to be documented or approved. **Required:** "Required" data listed in Table 3.3.1 must be obtained for an effective ILI project or its omission be approved and documented in accordance with Section 3.7 of this procedure. **Desired:** "Desired" data listed in Table 3.3.1 should be obtained if it is documented or easily measured. Its omission is not required to be approved or documented. **Considered:** "Considered" is a recommendation that a data element is taken into account for the selection of In-Line Inspection tools, interpretation, or analysis of test results. Failure Pressure (Pf): Calculated burst pressure from of an ILI anomaly using RSTRENG or equivalent method. Failure Pressure* (Pf*): Calculated burst pressure of an ILI anomaly including tool tolerances. **Discovery Pressure (Pdis):** Pdis is defined as the pipeline pressure at the time the condition was discovered and for the purpose of this procedure we will use the highest pipeline operating pressure during the in-line inspection tool IL1 run or the maximum operating pressure between the IL1 run and the time of discovery. Safe Pressure (Ps): Pf X (times) class location design factor **GIS**: Geographic Information System. The computerized graphics and database used to store the location, specifications, and integrity assessment of all pipeline facilities. GPS: Global Positioning System. Process by which coordinates are captured for mapping purposes. AGM: Above Ground Marker. Used for tracking ILI tool while traveling through pipe CPA: Cathodic Protection Area **MAOP**: Maximum allowable operating pressure for a section of pipeline between pressure controlling points. This is often determined by the "weakest" link of segments, fitting or valve between the pressure controlling points. **Discovery**: When PG&E receives actionable information on anomalies which have been reviewed by an ILI analyst. **Pipeline Features List**: A list detailing the various features of a pipeline, such as, pipe specifications, valves, tees, bends, etc. per PG&E records such as: Pipeline Survey Sheets, Plats, As-built drawings, Project files, etc. #### 3.0 PRE-ASSESSMENT #### 3.1 Objectives The objectives of the pre-assessment process are to: - Determine the feasibility of conducting an ILI - Determine if sufficient data exists to conduct an ILI - Collect the required pipeline data to assist in the interpretation and analysis of inspection results - Document pre-assessment results #### 3.2 Pipeline Segments Requiring ILI - 3.2.1 Identification of ILI Projects: Pipeline segments needing or requiring an ILI can be identified from multiple sources (IMAC, BAP, IMA). Usually the requests for an ILI will come from the Integrity Management or Risk Management Programs. However, the company may utilize ILI for other business or operating initiatives. This procedure does not address the identification or ranking processes of pipeline segments requiring ILI. Please refer to RMP-06 for details. - 3.2.2 Information Provided With ILI Request: The request for an ILI shall have the following information supplied to the ILI Program Manager: - Route number - · Starting and ending mile points of requested ILI - Risk Ranking - Location of HCA, if present, within the ILI project mile points (starting and ending) #### 3.3 Data Collection (Pre-Field Visit) - **3.3.1** Data Collection Objectives: A key aspect of the Pre-assessment step is the collection of pipeline data. Table 3.3.1 PRE-ASSESSMENT DATA provides a checklist of the data elements needed to conduct the ILI. - 3.3.2 Data Collection Phases: Data collection and analysis is a continuous activity throughout the ILI process. In the Pre-assessment step this procedure divides the data collection into two steps; "Pre-Field Data Collection" and "Field Data Collection." - 3.3.3 Data Requirements: The "Need" for the data elements is identified in Table 3.3.1 as either "REQUIRED" or "DESIRED." Data elements that are identified as REQUIRED shall be obtained before completion of the Pre-assessment step or approved to be delayed or omitted from data collection in accordance with Section 3.7 of this procedure. "DESIRED" data elements should be obtained if the data is available in existing records or can be obtained from easily conducted measurements or examinations. The Program Manager may consider desired data sufficiently important to classify it as "REQUIRED" for a specific ILI analysis. - **3.3.4 Data Sources:** Table 3.3.1 provides guidance to the possible sources for each data element. If the data element is not available in the listed sources the ILI Engineer should use good judgment on seeking the data elsewhere. A pipeline features list **shall** be compiled to identify all information about the pipeline such as: pipe wall thickness, grade, seam, fittings, valves, etc. for this purpose. - 3.3.5 Data Documentation: The collection of information shall be indicated on the "DATA ELEMENT CHECK SHEET" (Form A). Items should be signed off by the person who checked/filled the specific data element row. RMP-11 TABLE 3.3.1: PRE-ASSESSMENT DATA
LIST | | | Description | | Rec | Requirements | nts | | | Data Source | rce | | |------------|--|--|---|-------|------------------------------|---|-----|-------------------|--|-------------------------|---| | # | Data Element
Description | In-Line
Inspection
Tool Selection | Interpretation and Analysis
Of Inspection Results | ГравИ | ^s looT noitseqenl | Interpretation
and Analysis of
Inspection
Results ² | GIS | elif dot fliud-sA | Field to storifield notable no | 79fi)O | Comments | | 1.1
1.1 | 1.0 Fige Keelsa
1.1 Diameter | May reduce detection capability or prohibit passage of tool | For performing RSTRENG | æ | м. | æ | × | × | | | | | 1.2 | Wall thickness | May reduce detection capability or prohibit passage of tool | Impacts critical anomaly size | œ | R | Я | × | × | | | | | 1.3 | Grade | | For performing RSTRENG | œ | N/R | œ | × | × | | | | | 1.4 | Seam Type | | Older pipe typically has lower weld seam toughness that reduces critical anomaly size. Pre-1970 ERW or flash welded pipe may be subject to higher corrosion rates than the base metal | ۵ | R/N | O | × | × | | | | | 1.5 | Year Manufactured | May influence tool selection. | Older pipe typically has tower weld seam toughness that reduces critical anomaly size. Pre-1970 ERW or flash welded pipe may be subject to higher corrosion rates than the base metal | ۵ | N/R | o | × | × | | | Assume the same year as installed unless found otherwise. | | 2.0 C | 2.0 Construction Related 2.1 Year installed | | Impacts time over which coating degradation may occur, anomaly population estimates and correction rate actinutes | ۵ | N/R | υ | × | × | | | · | | 2.2 | Recent route changes/
modifications that may
not be in GIS | | | ۵ | v | N/R | | × | × | | | | 2.3 | Construction practices | | May indicate construction problems that may have occurred; e.g., BBCR, miter bends, wrinkle bends, etc. | Ω | ပ | v | | × | | Engr. Stds.
drawings | | | 2.4 | Location of major pipe appurtenances such as valves and taps | Investigate potential need for replacement or the installation of bars for tees. | Provides a 'known' reference for geo-
referencing indications | ĸ | м. | v | × | × | × | | | | | | | | | | | | | | | | $^{^1}$ R = Required, D = Desired (See paragraph 2.5 for definitions) 2 R = Required, C = Considered; N/R = Not required | | | Description | | Re | Requirements | | | | Data Source | urce | | |-------|---|---|---|-------------------|------------------------------|--|-----|-------------------|--------------------|----------------------|-------------------------| | Q# | Data Element
Description | In-Line
Inspection
Tool Selection | Interpretation and Analysis Of Inspection Results | _į peeN | ^s looT nobsequent | Interpretation to alaylary bns nother bns state of the sta | SIĐ | As-built Job file | Field Districts or | Division3 | comments | | 2.5 | Location of bends, including miter bends and wrinkle bends | May indicate locations at which replacements are needed to make the pipeline piggable | Provides a 'known' reference for geo-
referencing indications | œ | <u>د</u> | ပ | | × | | Trans. Plat
Sheet | | | 2.6 | Location of casings | | Provides a 'known' reference for geo-
referencing indications (Access issue for post pigging dig and potential coating defect) | ۵ | N/R | O | | × | ×
× | | | | 2.7 | Proximity to other pipeline structures, HV electric transmission lines and rail crossings | | Possible CP interference and 3 rd party damage | Q | ပ | U | × | | × | | | | 2.8 | Underwater sections and river crossings | | Access issue for post pigging dig and potential coating defect | ပ | N/R | υ | × | × | × | | | | 2.9 | Location of bores | | Access issue for post pigging dig and potential coating defect | D | N/R | ပ | | × | | | | | 3.08 | 3.0 Soils/Environmental | | | | | | | | | | | | 3.1 | Soil characteristics & types | | Can be useful in interpreting results.
Influences corrosion rate | a | ၁ | ၁ | × | | × | Form 4110 | GIS soil
data | | 3.2 | Assessment of environmental conditions | | May indicate potential environmentally sensitive areas | D | N/R | C | × | | × | | | | 3.3 | Topography | | Conditions such as rocky areas can make field inspections difficult or impossible. | Ω | 0 | N/R | | | × | | | | 3.4 | Land use (current/pass) | | Can be considered in evaluating the potential severity of damage. | ۵ | Ų | U | × | | × | | Asphalt vs.
concrete | | | Locations of poor
drainage | | . Influences corrosion rate and remaining life calculation | D | N/R | C | | | × | | | | 4.0 E | External Corrosion CP System Type (anodes, rectifiers, and locations) | | Support root cause analysis and CIS survey | ۵ | N/R | o | | | × | CPA | | | 4,2 | CP system boundaries | | Support root cause analysis and CIS survey | Q | N/R | ၁ | | | ^
× | X CPA
Records | | | 4.3 | Locations of Isolation
Points | | Support root cause analysis and CIS survey | O . | N/R | ၁ | | | ^
× | X CPA
Records | | | | | | | | | | | | | | | 6 17 10 Pipe inspection form If applicable cleaning pigs Check drip logs, PLM Previous Check drip logs, PLM comments Form 4110 USA
Data Base Patrol Form 4110 Form 4110 Corrosion Group, System Integrity Records SCADA Other Data Source Division × × × × × × × Districts or × × × × × × × Field × As-built Job file × × SID × × × × × × × × × Results² Inspection Ö Ó Ö O \Box Ç Ω Ω Ö O œ œ O nofferpretation for elevient of Requirements ξ N N Ϋ́ Š Ϋ́ X Ϋ́ χŽ Α̈́ ξ 'looT noitoaqenl S \Box Ω ۵ рөәи Δ \Box \Box Ω \Box Ω Ω œ œ Δ Ω Δ To establish threat for potential IC, Influence post pigging dig plan High third party damage areas may have increased coating fault anomalies. Provide useful data for post assessment Possible locations for SCC, Influence of activating manufacture defects. Provide useful data for post assessment analysis Interpretation and Analysis Of Inspection Results Affects manufacture threat review Influence post pigging dig plan Useful post assessment data analysis or data verification Potential 3rd party damage Description Inspection Tool Selection In-Line Known areas of shallow cover. Type and frequency of third party damage (Review construction 6.0 Internal Corrosion (IC) activities with operating Repair history/records, steel/composite repair Other prior integrity related activities – CIS, Location of abnormal Received gas from gathering or storage lines Leak rupture history Data Element Description History of 1C leaks Previously "pigged" Hydro Test dates/pressures Drip fluid analysis Inhibitor injection sleeves, repair pipe operating temperatures ILI runs, etc. Drip location personnel.) locations 5.10 5,5 5,6 6.5 6.6 5.4 5.7 5. 8 6,3 <u>6</u> 6.2 6.4 ₽# Ξ | 10 m | 14 (1.18), Report 1 | | | | | |--------------|---|---|--|--|--| | | shemmoo | | | | | | 9 | Other | Maintenance
Records | | Form 4110 | | | Data Source | Districts or | × | • | | × | | Dat | Fleld | | | | | | | elit doL iliud-sA | | × | | | | | SIĐ | | × | × | × | | ents | Interpretation
and Analysis of
fropection
Results ² | ပ | ပ | ပ | ပ | | Requirements | ^s looT noilseqanl | N/R | ပ | ၁ | ວ | | Re | [†] beeM | Q | ۵ | Q | O | | | Interpretation and Analysis
Of Inspection Results | Influence Root Cause analysis, post pigging dig plan, and the LTIMP prevention and mitigation plan. | Influence Root Cause analysis, post pigging dig plan, and the LTIMP prevention and mitigation plan | Influence Root Cause analysis, post pigging dig plan, and the LTIMP prevention and mitigation plan | Influence Root Cause analysis, post pigging dig plan, and the LTIMP prevention and mitigation plan | | Description | in-Line
Inspection
Tool Selection | | Will affect tool selection | Will affect tool selection | The state of s | | | Data Element
Description | Corrosion monitoring (LPR probes, weight loss coupons, corrosometer probes, etc.) | 7.0 Hard Spot Year installed, Mill, Seam type, etc per RMP-06 Section 3.5 | Records of hard spots failures | Abnomal CP levels | | | Ω# | 6.7 | 7.0 Har | 7.2 | 7.3 | #### 3.4 Data Analysis (Pre-field visit) 3.4.1 Identification of Missing Data: Once the Pre-field Visit data is collected the ILI Engineer should analyze the data to identify missing elements, and develop a list of data that will need to be obtained in the field. Form A - DATA ELEMENT CHECK SHEET in APPENDIX A can be used for this purpose. #### 3.5 Field Visit 3.5.1 General Description: Examining the physical locations where the ILI is to be conducted is a key activity in the gathering of data. It is important to collect as much data as possible to achieve the objectives of the Preassessment and effectively plan for the In-Line Inspection step of the ILI process. Hence, preparation is key to conducting an effective field visit. Some of the data elements from Table 3.3.1 that may require field collection or verification in the field are: TABLE 3.5.1: TYPICAL FIELD COLLECTED DATA | lD | Description | ∘ID ∈ | Description | |-------|--|-------|---| | . 2,2 | Recent route
changes/modifications that may
not be in GIS | 3.2 | Assessment of environmental conditions | | 2.4 | Presence of major pipe
appurtenances such as valves
and taps | 4.1 | CP system type (anodes, rectifiers, and locations) | | 2.6 | Presence of casings | 4.2 | Stray Current source/locations | | 2.7 | Proximity to other pipeline
structures, HV electric
transmission lines and rail
crossings | 4.3 | Test point locations (pipe access points) | | 3.1 | Soil characteristics & types | 5.6 | Type and frequency of third
party damage (Review
construction activities with
operating personnel) | - **3.5.2 Documentation:** All data collected in the field that will be used in the ILI project **shall** also be included on Form A. - **3.6 Data Filing:** Data collected during pre-assessment phase shall be stored in the final report per Section 5.9. - 3.7 Data Analysis Once the Field Visit data is collected the ILI Engineer shall analyze the data to identify missing Required data elements, and conduct a SUFFICIENT DATA ANALYSIS FORM B. - 3.7.1 Sufficient Data Analysis: The data shall be analyzed to determine if there is sufficient data to conduct an ILI. The analysis should include the following: - Missing Required Data: If there is missing required data and it is felt that this data is not essential to the ILI then the reason it is not necessary shall be explained in Form B - SUFFICIENT DATA ANALYSIS FORM. - Missing Desired Data: The ILI Engineer should review the missing desired data to identify if any of those data elements are essential to - conduct the ILI. If some of the missing desired data is essential it should be identified in the analysis and document on Form B. - **3.7.2 Documentation:** The ILI Engineer **shall** document if there is sufficient data to conduct an ILI. Form B SUFFICIENT DATA ANALYSIS FORM can be used for this purpose. #### 3.8 Feasibility Analysis - 3.8.1 Analysis: The ILI Team shall integrate and analyze the data collected on the pipeline segments and determine whether the use of ILI is appropriate. The framework for this analysis is that the Program Manager shall examine the existing data in each of the five categories in Table 3.3.1 (Form A) and assess the following: - In-Line Inspection: In-Line Inspection should address physical, operational and economic considerations. - Direct Examination: Direct Examination should address physical, operational and economic considerations. - **3.8.2 Documentation:** The ILI Engineer **shall** prepare Form C FEASIBILITY ANALYSIS FORM and have it approved by the ILI Program Manager. #### 3.9 ILI Pre-Assessment Review Meeting(s) - 3.9.1 Purpose: The ILI Project Manager shall conduct a meeting(s) to review the pre-assessment results, communicate the plan of how the ILI will be conducted, and build consensus for the plan. - 3.9.2 Agenda: The meeting(s) should have the following in its agenda: - Review the ILI Request information, DATA ELEMENT CHECK SHEET (Form A), SUFFICIENT DATA ANALYSIS FORM (Form B), and FEASIBILITY ANALYSIS FORM (Form C) - GIS Maps - · Discussion of required pipeline modifications - **3.9.3** Attendees: The meeting(s) may have the following attendees: Project Manager ILI Program Manager Manager of Technical Services or Pipeline Engineering ILI Technical Consultant Senior Corrosion Engineer Pipeline Engineer of the area Crew member familiar with the pipeline ILI Engineer Estimator **3.9.4 Changes:** Changes agreed upon in the meeting(s)
should be documented on the Pre-assessments forms. #### 3.10 Pre-assessment Report - 3.10.1 Report: The report shall have the following data and have been incorporated with the changes from the Pre-assessment meeting described in paragraph 3.9. All required forms shall be signed and dated by the ILI Program Manager. - ILI Request Information - GIS Maps - DATA ELEMENT CHECK SHEET (Form A) - SUFFICIENT DATA ANALYSIS FORM (Form B) - FEASIBILITY ANALYSIS FORM (Form C) - · Scope of work to modify pipeline, if applicable - The proposed inspection tool requirements - **3.10.2** Review, Approval and Filing: The report shall be reviewed and approved by the ILI Program Manager. A copy shall then be kept in the project file. #### 3.11 Pipeline Retrofit - **3.11.1 Purpose:** The step is to do necessary physical modification to make the pipeline piggable and install launcher and receiver. - 3.11.2 Retrofit Plan: The ILI Program Manager shall prepare a plan including funding, resource, engineering design and construction for the retrofit. The retrofit phase of a pipeline to be pigged for the first time may take more than a year to complete. #### 4.0 In-Line Inspection 4.1 Objectives: The objectives of the In-Line Inspection process are to: Clean the pipeline adequately for inspection Geometrically inspect the pipeline for dents or other geometric anomalies Inspect the pipeline for corrosion or other metal loss anomalies Map the pipeline to assure correct alignment and ability to locate anomalies Obtain ILI vendor report that will locate and quantify the severity of damage to the pipe wall and identify other anomalies #### 4.2 Selection and Marking of Above-Ground Markers (AGM) - 4.2.1 Objective: Prior to conducting an In-Line Inspection, the location of above ground markers shall be identified in the field and centimeter accuracy GPS coordinates obtained for these locations along with the depth of cover. A minimum of one AGM should be established approximately every mile. Markers shall be established in the field to identify the physical location of the AGMs. GIS themes shall be created for all AGMs and stored in GIS. - **4.2.2 Type of AGMs:** AGMs can be established every mile by utilizing one of the following: - 4.2.2.1 Significant bends, taps, valves, above ground crossings, wall thickness changes or the start of casings that can be accurately located in the field - 4.2.2.2 Pre-selected GPS locations for "pig trackers" - 4.2.3 Documentation: The location and method of marking shall be indicated on the IN-Line Inspection Above Ground Marker Locations form (Form D) #### 4.3 Preparation for In-Line Inspections - 4.3.1 Specifications: - **4.3.1.1** Each ILI Project **shall** have a written specification prepared for cleaning. These specifications **shall** provide adequate information - to ensure the pipeline is cleaned to meet the ILIT inspection requirements. - 4.3.1.2 Each ILI Project shall have a written specification prepared for ILI. This specification shall provide adequate information to ensure the vendor's inspection results meet the integrity assessment requirements. As a minimum the specification shall include the following: - Safety: The vendor shall meet PG&E's specified minimum requirements. - Sizing Accuracy: The required anomaly sizing shall be specified to determine an acceptable inspection. Allowable exceptions to the accuracy may be specified to account for short distances of speed excursions, etc. - Caliper Accuracy: The required anomaly sizing shall be specified to determine an acceptable inspection. Inspection shall be performed to collect data on dents, ovalities, or other geometric features that impact the integrity of the pipeline. - Geospatial Accuracy: Where practical, in addition to collecting the data about the condition of the pipe wall, all In-Line Inspections will also collect geospatial information throughout the survey. The geospatial information should enable the coordinate location of all anomalies, pipe joints, the location of all pipeline appurtenances, and the accurate development of the pipeline profile. The aboveground markers will be used to georeference the data to a horizontal accuracy of +/- 3'. - Operator Qualifications: Documentation needed to verify the competency of the vendor personnel who calibrate and operate the ILIT and analyze the data, including required training and testing. (ASNT No. ILI-PQ-2003) - **Schedule:** Required Immediate repair anomaly report as they are identified and 90-day response time for final report. - Report Format: Data required in Immediate repair anomaly report, final report, and the data format. #### 4.3.2 Contract: - PG&E shall follow existing corporate contracting guidelines, including sending out a request for proposal to qualified cleaning and inspection vendors, evaluating bids and contracting for cleaning, inspection and mapping of the pipeline. - Vendor Qualification: A PG&E ILI Team shall review and approve the vendor's qualification noting any exceptions to the minimum requirements (Form E). - **4.3.3** In-Line Inspection Plan Review: The Project Manager shall assemble and submit an In-Line Inspection Plan to the ILI Program Manager for review. - 4.3.3.1 Plan contents: The plan shall have the following documents: - In-Line Inspection Above Ground Marker Location Form (Form D) - ILI Vendor Qualification Form (Form E) - ILI Specification(s) - ILI Contract - Schedule #### 4.4 In-Line Inspection Field Operations - 4.4.1 In-Line Inspection Field Meeting: The Project Manager shall conduct a field meeting with the ILI vendor and the personnel supporting the inspection. At this meeting they should cover the following while referring to the ILI Contract, GIS Maps as well as other documents prior to the inspection run: - ILI Access: View the launch and receipt points for the ILI. - ILI Procedure: Review contractor's process and clarify the support PG&E will provide during the run. - Access to Above Ground Markers (AGM): Ensure the contractor is familiar with accessing each (AGM) and has the maps necessary to return to those locations. - Tracking: Review which party is responsible for pig tracking. - Schedule: What exact dates and times the vendor will conduct the inspection. - Landowner Contact: Provide Landowner notification information that will be sent to properties that will be accessed by PG&E or Contractor personnel. Also discuss protocol if landowners question field personnel. - Safety and Environmental Hazards: Discuss safety hazards, such as traffic, overhead lines, rectifier potentials, flora and fauna and other environmental concerns. - **Notification Procedure:** The vendor **shall** notify the Project Manager when abnormal conditions or situations develop. - **4.4.2** Operation Safety: PG&E shall follow all existing CGT Clearance Procedure S4420 requirements in launching, running and receiving pigs. These procedures detail clearance points, use man-on-line tags, etc. - 4.4.3 Contamination Prevention: PG&E shall develop and implement a plan to collect and remove debris generated from cleaning and inspection operations and to minimize debris spreading to off-line taps and downstream customers on the pipeline. This plan may require the installation of filters and/or separators at receiver location or at major off-line taps. It may also require that taps be closed for the duration of the pigging project or pig run or temporarily closed during pig passage. - 4.4.4 Customer Service: PG&E shall develop and implement a plan to accommodate customers being fed from pipeline to the extent reasonable and practical. These options may include temporary shutdown, back feed, cross-tie or alternative gas supply via CNG or LNG. - **4.4.5 Pig Tracking:** PG&E **shall** track all pigs which are run in the pipeline at spacing intervals adequate to ensure that pigs are operating within velocity parameters of cleaning or inspection requirements and to maintain the - ability to locate the pig within the pipeline should it become lodged or damaged. - 4.4.6 Vendor Performance: The In-Line Inspections shall be performed strictly in accordance with the approved specification. Any significant deviation from the specification shall be approved and documented in the EXCEPTION PROCESS (Form M) of this procedure described in Section 7. - 4.4.7 Verification of ILI Quality: Prior to leaving the site, the ILI contractor shall verify that the run was of sufficient quality to ensure meaningful data about the anomalies and to meet the sizing accuracy and the geospatial requirements. The Project Manager should document variances and PG&E's acceptance of these variances. - 4.4.8 Liquid Collection: Collect liquid sample at the pig receiver per GS&S O-16 Attachment 2 for each pigging project. The liquid sample is needed for testing IC. #### 5.0 DIRECT EXAMINATION For a typical Direct Examination Process see the flow chart shown in Attachment A. - 5.1 Objective: The objective of the Direct Examination phase is to: - · Gather data to validate the ILI Vendor's Report - · Verify the pipeline's integrity - Perform necessary repairs - · Restore the pipeline's MAOP, if required - · Determine the root cause of corrosion or damage - Complete an ILI Project Report - 5.2 Immediate Anomaly Discovery and Final ILI Vendor Report: The contractor shall notify PG&E immediately when anomalies that are described by CFR 49, Part 192, Section O, as "Immediate repair conditions" are identified (Table 5.5.1). The date of discovery of an "Immediate" anomaly shall be considered either the notification date of "Immediate" anomalies or the receipt of the Final ILI Vendor Report. No later than 180 days after the date of the successful final ILI run, the ILI contractor shall submit a final report. The final report shall integrate the geometry, metal loss, and any other ILI tools used, addressing internal corrosion, external corrosion and mechanical damage per the ILI specification. - **5.3 Pressure
Reduction Review Process:** As soon as possible but not exceeding 5 calendar days of receipt of the immediate anomalies report, the ILI engineer shall review the anomalies and take proper action to ensure pipeline safety according to the following steps: - 5.3.1 Create a list of "Immediate" anomalies: The ILI engineer shall review the immediate anomalies reported by the ILI contractor and document them on Form F. This Form shall be completed even though there are no Immediate anomalies. - 5.3.2 Verify pipe specifications and re-assess each anomaly on Form F: The ILI engineer shall determine the approximate location of each "Immediate" anomaly and shall determine the HCAs and identify the relative consequences (class location, structures, etc.) in the vicinity of the anomaly, determine the actual pipe specifications and use RSTRENG or equivalent effective area method to assess the ILI tool Pf. Record the highest Pf value from RSTRENG or equivalent effective area method - calculation of each anomaly and prioritize the anomalies on Form F. If there are no "Immediate" anomalies remaining on the list. Proceed to Section 5.5. - **5.3.3** Pressure Reduction: If there are any "Immediate" anomalies left on Form F after assessment of Pf, immediately reduce the operating pressure according to the following steps: - 5.3.3.1 Determine Pdiscovery (Pdis): Pdis is defined as the pipeline pressure at the time the condition was discovered and for the purpose of this procedure the highest pipeline operating pressure during the ILI run or the highest operating pressure either between the ILI run and the time the immediate anomalies are identified will be used. This pressure shall be recorded on Form F. (Note: It is not appropriate to spike the operating pressure prior to making a definitive call on immediates.) #### 5.3.3.2 Pressure Reduction Limits: - If there are any non-corrosion anomalies with metal loss or corrosion anomaly with metal loss greater than 80% of the wall thickness on Form F, the operating pressure shall be reduced to 80% of Pdis and proceed with Section 5.3.4. - For remaining corrosion anomalies on Form F proceed with the following; calculate Ps by multiplying the Pf value by the class location design factor and record the pressure on Form F. The operating pressure shall be reduced to the highest of 80% of Pdis or the lowest Ps of all the anomalies. - 5.3.4 Operational/Pressure Change Notification: If operational or pressure changes are required, the ILI Program Manager shall notify the GT&D GE Director, the Pipeline Engineering Manager and the Technical Services Manager. He shall communicate and document all required operational/pressure changes including over pressure protection system (Utility Work Procedure WP4430-07) and alarm settings to Gas System Operations (GSO) on Form F. - order the required changes and the responsible superintendent shall ensure that the changes executed by GSO are implemented immediately. The ILI Engineer shall review UO Standard 4413 to determine if additional reporting is required to the CPUC/OPS (e.g. A Safety Related Condition report should be filed in accordance with that standard if pipeline pressure must be reduced by 20% or more due to damage found and there is a structure within 660 feet of the damage location). The documentation of pressure reduction and resetting alarm settings implementation shall be kept in file, including Gas Log System (GLS) record. - 5.3.6 Inability of Reducing Pressure: When pressure reduction is not feasible, PM shall file an exception report and notify CPUC/OPS per Section 7 of this Procedure. - 5.3.7 Extension of Pressure Reduction Time Limit: When it is required to maintain pressure reduction time exceeds 365 days, the ILI engineer shall write a technical justification of no jeopardy to public safety and file it in the final ILI report and follow exception process per Section 7 of this procedure. - 5.4 Immediate Anomaly Inspection/Repair Plan: If the pressure of the pipeline needs to be restored prior to the receipt and verification of the Final ILI Report, the ILI Engineer shall prepare and submit Form G Anomaly Prioritization and Direct Examination Form (Inspection/Repair Plan) to the ILI Program Manager and the Manager of Technical Services. - **5.4.1 Field Inspection:** The Project Manager is responsible for all project management aspects of implementing the Inspection/Repair Plan. See Section 5.5, for details. - **5.4.2** Root Cause Analysis: The ILI Engineer shall ensure all data are collected to support the Root Cause Analysis. (See Section 5.8) - 5.4.3 Operational/Pressure Change Concurrence: After all Immediate anomalies are inspected/repaired; the ILI Program Manager shall evaluate the repairs and determine the timing of restoring the MAOP. He shall then gain concurrence from the GSM&TS Manager of Pipeline Engineering and the Manager of Technical Services to restore the MAOP, communicate and document all required operational/pressure changes to Gas System Operations (GSO). - 5.4.4 Operational/Pressure Change: GSO shall execute and order the required changes and the responsible district superintendent shall ensure that the changes executed by GSO are implemented per Utility Work Procedure WP4430-07. - 5.5 Inspection/Repair Plan: Within 90 days of receipt of the final report, the ILI Engineer shall prepare an inspection plan and submit to the ILI Program Manager and the Manger of Technical Services. The inspection plan shall be documented on Form G. In developing the inspection plan the tool tolerances per RMP File 7.11 (PG&E White Paper on Pf* Calculations Using ILI Data) shall be added to the anomalies for the Pf* calculations - **5.5.1 Prioritization of Anomalies:** For each In-Line Inspection, the anomalies **shall** be prioritized following the criteria in Table 5.5.1. All anomalies prioritized, as Immediate, Scheduled-one year and scheduled-other, **shall** be recorded on Form G. Table 5.5.1 In-Line Inspection Tool Anomaly and Direct Anomaly Prioritization Guide | %SMYS
at
MAOP | Immediate | Scheduled – One Year | Scheduled - Other | Monitored | |-----------------------|---|--|--|---| | At or
above
50% | Pf/MAOP <=1.1 Dents with metal loss, cracks or a stress riser PG&E's judgment SCC Metal loss affecting long seam formed by direct current, low frequency ERW or electric flash welding. Metal Loss > 80% W.T. | A smooth dent with depth greater than 6% (0.5" in depth dent for less than 12" diameter pipe) A smooth dent with depth greater than 2% (0.25" in depth dent for less than 12" diameter pipe) that affects girth weld or long seam | Pf*/MAOP <=1.39 PG&E's Judgment | All scheduled dents that engineering analyses demonstrate critical strain levels are not exceeded and left in place | | 30% to 50% | Pf/MAOP <=1.1 Dents with metal loss, cracks or a stress riser PG&E's judgment SCC Metal loss affecting long seam formed by direct current, low frequency ERW or electric flash welding. Metal Loss > 80% W.T. | A smooth dent with depth greater than 6% (0.5" in depth dent for less than 12" diameter pipe) A smooth dent with depth greater than 2% (0.25" in depth dent for less than 12" diameter pipe) that affects girth weld or long seam | Pf*/MAOP <=2.0 PG&E's Judgment | All scheduled dents that engineering analyses demonstrate critical strain levels are not exceeded and left in place | | Less
than
30% | Pf/MAOP <= 1.1 Dents with metal loss, cracks or a stress riser PG&E's judgment SCC Metal loss affecting long seam formed by direct current, low frequency ERW or electric flash welding. Metal Loss > 80% W.T. | A smooth dent with depth greater than 6% (0.5" in depth dent for less than 12" diameter pipe) A smooth dent with depth greater than 2% (0.25" in depth dent for less than 12" diameter pipe) that affects girth weld or long seam | Pf*/MAOP <=3,3 PG&E's Judgment | All scheduled dents that engineering analyses demonstrate critical strain levels are not exceeded and left in place | d/t - Defect depth to wall thickness ratio - **5.5.2** Number of Excavations: The inspection plan shall specify the number and location of excavations. The required excavations are as follows - "Immediate": All Immediate anomalies (See Table 5.5.1) shall be excavated for direct examination. - "Scheduled-one year": All Scheduled-one year anomalies (See Table 5.5.1) shall be excavated for direct examination. - "Scheduled-other": All scheduled-other anomalies (See Table 5.5.1) shall be included in the inspection plan. If the Integrity Mgmt Program Manager approves a shorter re-inspection interval, then, a lower Pf/MAOP value can be used that allows them to be Monitored until next scheduled re-inspection, per Figure 5.5.2 - "Monitored": No Monitored anomalies (See Table 5.5.1) are required to be excavated under these specifications. These anomalies must be recorded and compared to themselves during future inspections. - Minimum Excavations:
A minimum of two excavations shall be made for each ILI run. If two excavations are not sufficient to validate the ILI data, more excavations shall be performed. Figure 5.5.2 (ASME B31.8S-2001, Section 7, Figure 4) TIMING FOR SCHEDULED RESPONSES—TIME DEPENDENT THREATS PRESCRIPTIVE INTEGRITY MANAGEMENT PLAN - 5.5.3 Tool Tolerance Consideration: In selecting anomalies/clusters of corrosion for excavation, inspection and /or repair in order to gain maximum re-inspection interval, the ILI vendor tool tolerance should be added to the anomalies for calculating the Pf* per RMP File 7.11 (PG&E White Paper on Pf* Calculations Using ILI Data.) - **5.5.4 Documentation:** The Inspection Plan (Form G) **shall** be reviewed and approved by the ILI Program Manager and the Manager of Technical Services or his designate. - 5.6 Field Examination: All Immediate anomalies on Form G shall be excavated, examined and repaired/pipe replaced not exceeding 365 days from the pressure reduction date (Form F) and the remaining Scheduled one year and Scheduled other anomalies on Form G shall be completed within 365 days of receipt of the final report from the ILI vendor (For the purpose of the procedure, the date shown on the ILI vendor's report will be used). Repair decisions made following excavation and examination are documented on Form I. If any of the required excavations or repairs can not be completed within 365 days, the PM shall complete an exception report (Form M) per Section 7 of this Procedure. The field examination addresses any Immediate, Scheduled – one year, and selected Scheduled – other anomalies in the Inspection Plan. It also validates the In-Line Inspection Vendor's Report. The process includes: · Scheduling the excavations - Excavating the anomalies and collecting data at the identified locations - · Comparing the field data with ILI data - · Evaluating remaining strength of the pipe segment - · Performing repairs, if needed - **5.6.1 Scheduling the Excavations:** The ILI Project Manager is responsible for scheduling the excavations to ensure that they are performed with consideration of the order determined in section 5.5 and consideration of the excavation efficiency. - 5.6.2 Pipe Excavation and Data Collection: The ILI Project Manager shall schedule and monitor the excavations, until all excavations needed to validate the re-inspection interval are completed. The pipe shall be excavated in accordance with PG&E Utility Operations Guideline G14413 "Procedure for Excavating Pipeline and Services." In addition, the following requirements shall be met: - Location and Size of Excavation: The location and size of the excavation site shall be identified and recorded on Form H: EXCAVATION DATA SHEET. Each end of the excavation shall be located and recorded with a GPS instrument. The length of the excavation shall be physically measured and recorded on Form H. - Data Collection: Collecting data on the condition of the coating and the pipe at the excavation site is a key step of the ILI process. Either company personnel and/or the contractor can perform the data collection. The data that is to be collected for Form H is identified in Table 5.6.2. All excavation sites shall include wet magnetic particle inspection to test for SCC. # TABLE 5.6.2 DIRECT EXAMINATION DATA COLLECTION REQUIREMENTS (FORM H) | □ Data
Element | DATA Туре | Required | Description | |-------------------|---------------------------------------|---|--| | 1.0 Befor | e Coating Removal | - 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | The state of s | | 1.1 | Native Soil Type | R | Check the appropriate box to determine the type of soil the pipe is bedded in. The reference location shall be the middle of the bellhole length at the springline location. Also, in the comments section record the type of soil the pipe is bedded in using the USC classification system. Clayey Loam, clayey sandy loam, etc. | | 1.2 | Existing Coating Type | R | Report the existing coating type, its approximate thickness, and the number of layers. For reference use the middle of the excavation length at the springline of the pipe. | | 1.3 | Hollday Testing | R | This test allows for electrical identification of location and size of coating holidays, and is particularly valuable in identifying areas to pay special attention to during coating removal. The holidays should be mapped electrically unless the coating is sufficiently degraded to where it is obvious where the holidays are. These areas could provide significant evidence and help in determining the root cause of any corrosion that is found. In addition these areas could be critical in determining if the corrosion is active or inactive. | | 1.4 | Measurement of pipe to soil potential | R | These measurements shall be performed in accordance with NACE Standard TM0497. The reference electrode shall be placed in the bank of the excavation within 1-2 inches of the coating. These potentials may help identify dynamic stray currents, as well as help in determining the root cause of any corrosion present (active vs. inactive). | | 1.5 | Soil Resistivity | R | Soil resistivity measurements: (1) 4-pin method: The pin alignment shall be taken transverse to the pipe. The nearest probe shall be at least 10 feet from the pipe. Pin spacing shall approximate the pipe centerline depth. This is intended to be a measurement of native (original) soil conditions. (2) Soil Box: The soil desired here is that in which the pipe is bedded at the springline location in the middle of the excavation length. Note whether the soil is native or sand. | | 1.6 | Soil Sample | R | The soil immediately adjacent to the pipe surface shall be collected with a clean spatula or trowel and placed in a 16 oz. plastic jar with a plastic lid. The soil desired here is that in which the pipe is bedded at the springline location in the middle of the excavation length. In some cases special samples must be obtained in-situ using a "spoon" that will keep the sample confined. The data will be used for determining the soil corrosivity using a risk based weight-function model, and should be used for prioritizing excavations within the same priority. The sample jar should be packed full to displace as much air as possible. Tightly close the jar, seal with plastic tape or equivalent and using a permanent marker or label to record the sample location on both jar and lid. See Appendix C | | 1.7 | Groundwater Samples | R | Take groundwater samples if water is present in the excavation. Water should always be collected from the open ditch when possible. Completely fill the plastic jar and seal and identify location as described above. For special situations it will be used for determining the bulk groundwater chemical properties. | | 1.8 | Coating Condition | R | Document the general coating condition. Three conditions could exist (1) Coating Is in good condition and completely adhered to pipe; (2) Coating partially disbonded and/or degraded; (3) The coating is significantly disbonded or missing, i.e., most of it comes off with the soil. | | 1.9 | Map Of Coating Degradation | R | Note in the map the location of all coating holidays, calcareous deposits, etc. The zero reference shall be the farthest upstream location that is inspected. | | 1.10 | Photo documentation | R | Document the coating condition with a digital camera. Photos shall have ruler or other device to determine magnification of photographs showing details of the pipe and coating condition. The minimum requirements shall be to document the following: The type of cover Macros showing the cross-section of the excavation (depth of pavement, soil strata, etc.); cross section showing the strata under the pipe especially if rocks are present. Macros of areas where the jeep test shows holidays As-found condition of the coating after excavation is complete General condition of
coating Showing the overall presence or absence of calcareous deposits after the coating has been completely removed but prior to sandblasting. Presence or absence of rocks embedded in the coating (preferably at the 6:00 position) Pitting before and after sandblasting Any unusual characteristics of the pipe or excavation After recoating Documenting the as-left condition of the site Macro as well as perspective views shall be recorded. The photo log on page 9 of 10 of the H-form shall be filled out with any necessary descriptions of the photographed areas. | | Data
Element | DATA Type | Required | Description | |--|---|-----------|---| | 1.11 | Coating Sample | R | Two samples of the coating shall be obtained. One will be sent to a lab for asbestos testing. The other sample will be stored for physical examination and ald in determining root cause. This sample may also be used to determine the electrical and physical properties of the coating as well as for performing microbial tests. This sample shall be obtained from an area where the worst pipe damage was found, if possible. This sample shall be given to the FES or designate | | 1.12 | Under coating liquid pH analysis | R | If any liquid is detected underneath the coating the pH shall be determined with pH litmus paper. This test infers the relative level of CP reaching the pipe surface. | | 1.13 | Corrosion Product Removal | R | Carefully remove any corrosion deposit for analysis. The presence or absence of corrosive species in the corrosion products can guide the root cause analysis. Analysis may include, but is not limited to, MIC testing, chemical testing, and in some cases XRD testing. | | 1.14 | Soil pH | R | Obtain soil pH reading at the upstream and downstream ends of the bell hole using the St electrode. This must be done in the soil the pipe is bedded in. Helps determine the corrosivity of the soil. | | 2.0 After | Coating Removal | | | | 2.1 | Pipe Temperature & Pipe
Diameter | Д | Measure the bare pipe surface temperature. This factors into the tendency for coating to disbond and SCC susceptibility. Measure the circumference of the pipe using a pi tape or other suitable device and compute the actual outside diameter of the pipe. | | 2.2 | Weld Seam Identification | D | The type of weld seam shall be identified and recorded. It will be used to compare with GSAVE, and the presence of brittle seam welds could also be determined. If the seam type cannot be determined, check that box. In some cases it will be necessary to perform a macro etch to locate and characterize the weld type and condition. The macro will only be done when specifically called for by the FES or designate Recoating of the pipe and backfilling of the bell hole will not be allowed unless the long seam has been identified or there is no external corrosion. | | 2.3 | Girth Weld Coordinates | R for ILI | This is required for ILI inspections. ILI keys on the nearest girth weld to determine the location of the bell hole and to compare to ILI girth weld data. | | 2.4 | Other Damage | R | Other damage to the pipe surface that can be visually detected shall be recorded, and
Immediately reported to PG&E. Examples of such damage would include gouges,
cracking, dents and out of roundness. | | 2.5 | UT Wall Thickness Measurements | R | Ultrasonic wall thickness shall be taken at every quadrant on the pipe to establish original/nominal wall thickness. In cases where an ICDA pre-assessment has been performed, a UT grid shall also be obtained at the 6:00 location for a length of 1-foot circumferential by 1-foot axial. Grid size shall be 1"x1". The minimum thickness measured in each grid box shall be recorded. The grid shall be located at the low end of the pipe. This ICDA grid and angle of inclination shall be recorded on page 6 of 10 on the H-form. | | 2.6 | Wet Fluorescent Magnetic Particle
Inspection | R | For determining the presence or absence of SCC this test shall be performed. Only the AC yoke method shall be used. Surface preparation shall be light sandblasting. On occasion the FES or designate may require wainut shell blasting. Dry powder methods are not acceptable. Direct electric current methods are not acceptable. All indications shall be photo documented under both black and white light and the photos included in the report. The PG&E PM shall be notified immediately of any indications found. | | 2.7 | Photographic Documentation of
Corroded Area | R | The corroded surface shall be photographed, preferably with a digital camera to documen the morphology and extent of the corrosion. The photo log on page 9 of 10 of the H-form shall be filled out with any necessary descriptions of the photographed areas. | | 2.8 | Overview Map Of Corroded Area. | R | An overview map of the corroded area shall be sketched out onto the form. Enough detail shall be included to sufficiently document where and how large the corroded areas are. The zero reference point shall be the farthest upstream location that is inspected. | | Page 3
of 10 | Excavation Drawing | D | The pipeline inclination angle and the depth profile shall be measured and recorded at each end and in the middle of the bell hole. The inclination angle shall be recorded in the boxes above the grid, and the depth profile shall be measured and documented in the grid. | | Pages 4
of 10
and
5 of 10
of the
H-Form | Pit Depth Measurement Grid
Sheets | R . | Corrosion damage shall be measured with sufficient detail to enable accurate RSTRENG analyses of the corrosion area. A grid of wall loss measurements shall be taken over the entire corroded areas. The grid shall be oriented so that columns are circumferentially oriented on the pipe and the rows lie parallel to the longitudinal axis of the pipe. The grid size should be sufficiently fine to document the variation of wall thickness but in no case shall be greater than a one-inch mesh. The grids shall be documented on pages 4 of 10 and 5 of 10 on the H-Form. | | 3.0 | Pipe Recoat Data | | | | 3.1 | Sandblast Media | R | Record the type of media used – sand, grit, or copper slag are all acceptable. Use of sho is prohibited. Also record the final anchor profile measurement using the TesTex Press-C Film tape method. | | | | | , | | Data Element | DATA Type | Required | Description | | |--------------|----------------------------------|----------|---|--| | 3.2 | Re-coating Type | R | Record the coating type used to recoat the pipe. | | | 3.3 | Environmental Conditions | R | Document the relative humidity, temp, dew point, etc., at the time of coating. For epoxy systems, the pipe must be over 50 degrees F, at least 5 degrees F above the dew point and the relative humidity must be less than 80%. | | | 3.4 | Repair Coating Hardness | R | For epoxy systems measure and record the final hardness before the pipe has been released for burial. | | | 3.5 | Coating Thickness | R | Measure the coating thickness at the locations given. Each clock position listed shall be the average of 3 readings within a 4 cm circle. The repair coating shall be holiday tested and all holidays must be repaired and retested. It is preferable to repair holidays using the same coating system, although alternative repair systems can be acceptable. The PG&E FES or designate must approve all alternative repair systems. | | | 3.6 | Coupon Test Station Installation | R | Document the type of test station left behind. For coupons, it is recommended that the commissioning should begin no sconer than 3 months after installation. The test station should be installed at the extreme end of the bell hole adjacent to or in the "old" coating that is NOT being reconditioned. | | | 3.7 | Backfill Material | R | Note what material was used for backfill and whether or not pipe protection was used. | | | 3.8 | P/S Readings | R | Perform at least 1 P/S on reading over the pipeline after backfilling but BEFORE paving or any concrete work is done. In some cases perform a local "on" survey and record the results. | | | 3.9 | Site Sketch | R | A sketch of the site arrangement shall be made, showing the inspected area as well as measured distances from physical features such as roads, buildings, distance from upstream girth weld (if available), etc. The purpose would be to be able to determine the location using physical markers in the field (without using GPS) should the area be paved over, and to confirm the locations of those structures in GSAVE. | | - 5.6.3 Evaluating Remaining Strength: The RSTRENG or KAPA (Failure pressure calculation software developed by Kiefner & Associates) calculations are performed and the summary is recorded on Form I "DIRECT EXAMINATION SUMMARY" for the exposed corroded areas to evaluate the remaining strength of the pipe. The RSTRENG or KAPA calculations are used to determine the following: - Predicted Failure Pressure: A Pf
shall be calculated using RSTRENG or KAPA for each corroded area that is direct examined and determine if action needs to be taken. Other analytical techniques may be used if approved by the Manager of Technical Services or his designate. An individual trained and qualified to use RSTRENG or KAPA shall make these calculations. Records of the qualification shall be maintained in the Integrity Management Program file. - Reassessment Interval: The ratio of Pf/MAOP of the field examined anomalies and Pf*/MAOP of the un-examined anomalies remaining on the pipeline (Table 5.6.5) are key factors in determining the reassessment Interval. - 5.6.4 Comparing Field Data with ILIT Data: A comparison shall be made between field data and ILI data; and to be provided as input for the Long Term Integrity Management Plan. - 5.6.5 Performing Repairs on Excavated Anomalies: In general, all corroded areas with *Pf* less than those shown in Table 5.6.5 **shall** be repaired so that the maximum re-inspection interval can be achieved. ILI Engineer to inform Pipeline Engineer and follow the Utility Work Procedure WP4100-05 to determine if and how the anomalies should be repaired. Any exceptions **shall** be documented on Form M "EXCEPTION REPORT" and approved by the Manager of Technical Services. TABLE 5.6.5 MINIMUM PF TO JUSTIFY MAXIMUM RE-INSPECTION INTERVAL³ | | CRITERIA | | |----------------------|---------------------------|---------------------------| | AT OR ABOVE 50% SMYS | At or above 30% up to 50% | Less than 30% SMYS | | Pf above 1.39 times | Pf above 2.0 times | <i>Pf</i> above 3.3 times | | MAOP | MAOP | MAOP | - 5.7 MAOP Restoration Review/Concurrence: If the pipeline pressure has been reduced, the ILI Program Manager shall evaluate the repairs and determine the timing of restoring the MAOP. He shall notify GT&D GE Director and the Manager of Technical Services, and gain concurrence from the Manager of Pipeline Engineering and the Manager of Technical Services to restore the MAOP, communicate and document all required operational/pressure changes to Gas System Operations (GSO). - 5.7.1 Operational/Pressure Change: GSO shall execute and order the required changes and the responsible district superintendent or T&R Supervisor shall ensure that the changes executed by GSO are implemented. ³ ASME B31.8S 2004, Supplement to B31.8 on Managing System Integrity of Gas Pipelines, Section 7, Figure 4 #### 5.8 Root Cause Analysis **Procedure:** The ILI Project Manager **shall** ensure that a root cause analysis is performed on all Direct Examined pipe. Where it is determined that a significant number of direct examined anomalies are due to the same cause, a common single root cause report shall be sufficient. Where multiple causes are implicated, the number of root cause investigation shall be increased to adequately document the individual causes. **Documentation:** The root cause of all Direct Examined pipe **shall** be documented on Form K "ROOT CAUSE ANALYSIS REPORT" and be completed within 90 days of receipt of the field examination report. - **5.8.1 Description of Damage:** Types of damage observed e.g. coating, pipe, and damage mechanism (external corrosion, third party, etc.). - **5.8.2 Extent of Damage:** Review GIS and other historical maintenance data to determine if they may assist in quantifying the extent of the damage or the needed extent of the mitigation activities. - **5.8.3** Review of Existing Damage Mitigation Measures: Review of the existing mitigative measures that should address the threat causing the damage. Describe any problems with existing mitigation. - **5.8.4** Root Cause of Damage: As a result of the review of the damage, historical data, and the existing mitigative measures, describe the root cause of the damage found. - **5.8.5** Review of Damage Mitigation Measures Taken: Describe the actions taken to mitigate the damage found as a result of the ILI. - 5.8.6 Evaluation of additional Mitigation Efforts: Describe any additional mitigation efforts that may help address the root cause of the damage. This may include coating replacement, the installation of additional CP, Landowner notifications, etc. - 5.8.7 Evaluation of need for additional testing: If the root cause analysis identifies a mechanism that the ILI process is not well suited to detect, then it shall be documented on Form M and brought to the attention of the Manager of Technical Services. - **5.9 RMP-11 Final Report :** This report includes: ILI Vendor Report, Bellhole Inspection Report and PG&E Final Report. - **5.9.1 ILI Vendor Report:** This report includes the hard copy, associated software, and electronic data provided by the ILI vendor. - **5.9.2 Bellhole Inspection Report**: This report Includes all "H-Forms" and is provided by the bellhole inspection vendor. - 5.9.3 PG&E Final Report: Within 45 days after direct examinations and root cause analyses are complete, the ILI engineer shall be responsible for developing the PG&E final report. The report shall have the following content. - Project Summary: Project Manager shall complete a discussion of job details by project phase including lessons learned, results and critiques. (Attach Job estimate) - Pre-Assessment: Documentation of the ILI feasibility, Forms A, B and C, and the Pipeline Features List. - ILI Planning: Documentation of AGM locations, Form D. Documentation of the ILIT vendor qualification, Form E. (Attach ILI specification and ILI contract.) - ILIT Operation: Project Manager shall summarize how the ILIT field operation went. (Attach Tracking Spreadsheet and Clearance Procedure) - Direct Examination: Documentation of all direct examinations, Forms F, G, and I. - Post Field Inspection Pipeline Listing: Pipeline anomalies list with all digs and repairs marked (Excel file). - Root Cause Analysis: Documentation of root cause analysis, Form K - Exception: Documentation of exceptions report, Form M. - **5.10 GIS Anomaly Documentation**: All anomalies listed in the ILI Vendor Report and the Bellhole Inspection Report **shall** be mapped in GIS including but not limited to the following information for data integration and future monitoring: - Geographic Location: In UTM, Zone 10, NAD83, meters. - ILI Log Distance - Severity Prioritization: Whether it is Immediate, Scheduled-one year, Scheduled-other, or Monitored - Type of Anomaly: Ext ML, Int ML, Dent, etc. - Relative Location of Anomaly: Anomaly on pipe, weld or close to girth weld - · O'clock position: Location around the circumference - Size: Maximum depth, length and width per ILIT - . Box: Cluster and Cluster ID - ILIT Pf: Calculated (Pf) derived from Vendor's ILIT report - Direct Examination (Y or N) - Actual Size: Maximum depth, length and width per direct examination, if available. - RSTRENG Pf: Calculated (Pf) derived from direct examination, if available - Pf/MAOP: Use RSTRENG failure value for Pf, if available. Otherwise, use ILIT report Pf. - Record of Repairs: Type of repair, date of repair, if available - Quality Assurance - ILI date: Date of the ILI run - Vendor Name: ILI Vendor - 5.11 Distribution: A hard copy of the RMP-11 Final Report shall be provided to the Integrity Management Program Manager for filing in the Integrity Management Library (Kettleman Conference Room 200). Additional copies of the ILI Vendor Report and Bellhole Inspection Report shall be distributed to the following persons: - ILI Program Manager - ILI Project Manager - ILI Engineer - Pipeline Engineer responsible for the pipeline - District Superintendent/Distribution T&R Supervisor responsible for the pipeline #### 6.0 POST ASSESSMENT **Objective:** The objective of the Post Assessment process is to develop a Long Term Integrity Management Plan (LTIMP) to mitigate any significant deficiencies identified by the RMP-11 Final Report. The LTIMP **shall** include assigning re-inspection intervals and assessing/monitoring the overall effectiveness of the ILI process. **Responsibility:** After completing the RMP-11 Final Report, the ILI Program Manager will turn over the project to the Integrity Management Program Manager who **shall** be responsible for determining and documenting the re-inspection interval, ensuring the reinspection occurs prior to the end of the interval, and that a project is planned to mitigate any significant deficiencies identified by the RMP-11 Final Report. The Manager of Technical Services **shall** approve the LTIMP. **Documentation:** The LTIMP including re-inspection interval for the pipeline segment **shall** be documented in the Integrity Management Areas (IMAs) per RMP-06. **Re-inspection Intervals:** The Integrity Management Program Manager will review the anomalies in the ILI Vendor Report that are not direct examined and the root cause analysis to determine the appropriate re-inspection intervals per Figure 5.5.2 or Maximum re-inspection interval in Table 6.1, and recommend any additional long-term mitigation that needs to be done. TABLE 6.1 TIMING SCHEDULE RESPONSES - TIME DEPENDENT THREAT | INTERVAL | CRITERIA | | | | | | |----------|---|--|--|--|--|--| | (YEARS) | AT OR ABOVE 50% SMYS | AT OR ABOVE 30% UP TO 50% | Less than 30% SMYS | | | | | 5 | Pf (or Pf*) above 1.25 and <= 1.39 times MAOP | Pf (or Pf*) above 1.4 and
<= 1.7 times MAOP | Pf (or Pf*) above 1.7 and <= 2.2 times MAOP | | | | | 10 | Pf (or Pf*) above 1.39 times
MAOP | Pf (or Pf*) above 1.7 and
<= 2.0 times MAOP | Pf (or Pf*) above 2.2
and <= 2.8 times MAOP | | | | | 15 | Not Allowed | Pf (or Pf*) above 2.0 times
MAOP | Pf (or Pf*) above 2.8
and <= 3.3 times MAOP | | | | | 20 | Not Allowed | Not Allowed | Pf (or Pf*) above 3.3 times MAOP | | | | **6.2 Data Integration** The following systems will be updated to ensure on-going data integration **GIS:** All anomalies will be incorporated into
the ILI anomaly theme. In addition, the Risk Mitigation theme will be updated to reflect the recent inspection of the pipeline segment. If the inspection reveals any data discrepancies in GIS, these will also be updated. **Integrity Management Plan:** The integrity management plan for the pipeline segment will be updated to reflect the ILI inspection results. **Integrity Management Schedule:** The integrity management schedule will be updated with the re-inspection date for the pipeline segment. **Long-term Mitigation:** Mitigation activities will be scheduled to address any significant deficiencies identified by the LTIMP. ⁴ ASME B31.8S 2004, Supplement to B31.8 on Managing System Integrity of Gas Pipelines, pg. 27-6, Figure 4 (Section 5, Figure 5.5) #### 7.0 EXCEPTION PROCESS **Objective:** The objective of this section is to provide control and documentation of exceptions taken. This control and documentation is required to ensure the compliance with the ILI process, to continuously improve the process by providing feedback, and to have an auditable trail. It is expected that all requirements of this procedure be met in conducting an ILI. However, when it is not feasible to meet certain requirements then exceptions can be taken by obtaining approval; and documenting the exceptions as prescribed in this section. **Documentation:** Document the above steps on Form M - EXCEPTION REPORT. Include all exception reports in the PG&E Final Report. - **7.1 Exception Requirements:** The following process is required for taking an exception with this procedure. It **shall** be documented on Form M EXCEPTION REPORT: - Paragraph Number of Exception: State the specific paragraph number where the exception is being taken. - Requirements of Paragraph: Briefly state in your own words the requirements of the paragraph. - Alternative Plan: To state what is proposed instead of what is required in the procedure. - Reason for Exception: Provide the reason the exception is needed. - Recommendation: Indicate if it is recommended to change the procedure or if this exception is project specific. - Approval: Obtain approval from the Manager of Technical Services or his designate prior to acting on the exception. - **Notification:** Refer to RMP-06, Section 15 for CPUC/OPS notification requirements. #### 0.8 <u>Documentation and Record Keeping</u> Purpose: Table 8.0 summarizes the required forms and associated responsibilities. TABLE 8.0 - DOCUMENTATION AND RECORD KEEPING REQUIREMENTS | Paragraph | FORM | PURPOSE | RESPONSIBILITIES | |---------------------------|-------------------|--|---| | 3.0 PRE-
ASSESSMENT | А | Data Element Check List | ILI Engineer | | | В | Sufficient Data Analysis | ILI Engineer | | | | Feasibility Analysis | ILI Program Manager | | | | | ILI Engineer | | | С | | (This form includes
the authorization of
Forms A&B also.) | | 4.0 In-Line Inspection | D | AGM Locations | ILI Engineer | | | Е | ILI Vendor Qualification Form | ILI Engineer / ILI
Program Manager | | 5.0 DIRECT
EXAMINATION | F. | Immediate Anomalies Analysis | ILI Engineer / ILI
Program Manager | | | G | Indication Prioritization and Direct Examination Form (Inspection/Repair | ILI Engineer ILI Program Manager | | | | Plan) | Manager of Technical
Services | | | н | Document all immediate and scheduled anomalies | ILI Engineer or
Corrosion Engineer | | | | Direct Examination Summary | ILI Program Manager | | | K | Left Blank Intentionally Root Cause Analysis | Sr Corrosion Engineer Manager of Technical Services | | | A thru K
and M | PG&E Final Report | ILI Program Manager | | 6.0 POST L | | Left Blank Intentionally | | | OTHER M | | Exception Reports | ILI Engineer ILI Program Manager Manager of Technical Services | # **ATTACHMENT** material redacted GTR0007152 #### **RMP-11** APPENDIX ILI Forms 36 material redacted GTR0007153 | SHEET | |---------| | CHECK | | ELEMENT | | : DATAE | | ORM A: | LINE NUMBER: STARTING MILE POINT: ENDING MILE POINT: REFERENCE SECTION: TABLE 3.3.1 PROJECT MANAGER: Table 3.3.1: Pre-assessment Data List | | Comments | produce to the first of the second se | | | | | | | | | | | |--|---
--|---|---|---------------------------|---|---|--|---|--|---|--| | The second secon | Other | Dirolino | ripeime
Features List | Pipeline
Features List | Pipeline
Features List | Pipeline
Features List | Pipeline
Features List | | Pipeline
Features List | | Engr. Stds.
drawings | | | urce | Districts or
Division | | | | | | | | | X | | | | Data Source | Field | | | | | | | | | × | | × | | | əlfi dol tlind-zA | ÷ | × | × | × | × | × | | x | × | × | × | | | SID | | × | × | × | × | × | | × | | | × | | ents | bns noisterpretation
Assemble of the solits solit of the solits solit of the solits of the solit of the solit of the solit of the solits of the solit | | Я | ĸ | Ж | C | o | | ၁ | N/R | ر
ر | ပ | | Requirements | ^s looT noitzeqenl | | 껖 | ĸ | NR | NR | N/R | | N/R | ၁ | ၁ | Я | | Re | Need ¹ | | ч | ĸ | × | D | Ω | | D | D | Q | м | | | Interpretation and Analysis
Of Inspection Results | | For performing RSTRENG | Impacts critical anomaly size | For performing RSTRENG | Older pipe typically has lower weld scam
toughness that reduces critical anomaly size.
Pre-1970 ERW or flash welded pipe may be
subject to higher corrosion rates than the base
metal | Older pipe typically has lower weld seam toughness that reduces critical anomaly size. Pre-1970 ERW or flash welded pipe may be subject to higher corrosion rates than the base metal | | Impacts time over which coating degradation may occur, anomaly population estimates, and corrosion rate estimates | | May indicate construction problems that may have occurred; e.g., BBCR, miter bends, wrinkle bends, etc. | Provides a 'known' reference for geo-
referencing indications | | Description | In-Line
Inspection
Tool Selection | May reduce detection | capability or prohibit
passage of tool | May reduce detection
capability or prohibit
passage of tool | | | May influence tool
selection | Charles and the charles and the charles are the charles and the charles are th | | | | Investigate potential need for replacement or the installation of bars for tees. | | | Data Element
Description | alted | Diameter | Wall Thickness | Grade | Seam Type | Year Manufactured | 2.0 Construction Related | Year Installed | Recent route changes/
modifications that may not
be in GIS | Construction Practices | Location of major pipe
appurtenances such as
valves and taps | | | A # | 1.0 Pipe Related | 1.1 | 1,2 | 1.3 | 1.4 | 1.5 | 2.0 Const | 2.1 | 2.2 | 2.3 | 2.4 | $^{^{1}}$ R = Required, D = Desired (See paragraph 2.5 for definitions) 2 R = Required, C = Considered; N/R = Not required | | Comments | | | | | | | | | | | | | | | | | |--------------|--|---|--|---|--|--|-------------------------|---|--|--|---|--|--|--|--|--|--| | | -19dPO | Trans. Plat
Sheet | | | | | | Form 4110 | | | | | CPA Records | CPA Records | CPA Records | CPA Records | CPA
Records, past
survey
reports. | | ource | Districts or
Division | | × | | | | | | | | | × | × | × | × | × | × | | Data Source | Field | | x | × . | × | | | Х | × | × | × | × | × | × | × | × | × | | | olft dol tlind-sA | × | × | | × | × | | | | | | | | | | | | | | CI | | | × | × | | | × | × | | × | | | | | | | | ents | has notistoryretal
to sisylsnA
stilusoM notioogsal | υ | O | ပ | ပ | ပ | | C | C | N/R | v | ၁ | O | ٥ | ט | ۲ | ပ | | Requirements | Inspection Tool ² | R | N/R | ပ | N/R | N/R | | Э | N/R | υ | ပ | N/R | N/R | N/R | N/R | N.R. | N/R | | Re | ¹ D99N | R | α | Ω | C | Ω | | Ω | Д | Ω | Q | Q | Ω | Q | Q | Q | Д | | | Interpretation and Analysis Of Inspection Results | Provides a 'known' reference for georeferencing indications | Provides a 'known' reference for geo-
referencing indications | Possible CP interference and 3 rd party damage | Access issue for post pigging dig and potential coating defect | Access issue for post pigging dig and potential coating defect | | Can be useful in interpreting results.
Influences corrosion rate | May indicate potential environmentally sensitive areas | Conditions such as rocky areas can make field inspections
difficult or impossible. | Can be considered in evaluating the potential severity of damage. | Influences corrosion rate and remaining life calculation | Support root cause analysis and CIS survey | | Description | In-Line
Inspection
Tool Selection | May indicate locations at which replacements are needed to make the pipeline piggable | | | | | | | | | | | | | | | | | | Data Element
Description | Location of bends,
including miter bends and
wrinkle bends | Location of casings | Proximity to other pipeline structures, HV electric transmission lines and rail crossings | Underwater sections and river crossings | Location of bores | 3.0 Soils/Environmental | Soil characteristics &
types | Assessment of environmental conditions | Topography | Land use (current/pass) | Locations of poor drainage | 4.1 CP System Type (anodes, rectifiers, and locations) | CP system boundaries | Locations of Isolation
Points | Locations of Connections to Distribution | Stray Current
source/locations | | | B # | 2.5 | 2.6 | 2,7 | 2.8 | 2.9 | 3.0 Soils/ | 3.1 | 3.2 | 3.3 | 3.4 | 3,5 | 4.1 | 4.2 | 4.3 | 4,4 | 4.5 | | ~^ | | |--------|--| | ~~ | | | \sim | | | বা | | | | | | | Thinkey (2) | Description | | Re | Requirements | ents | | Ď | Data Source | • | | |----------|--|---|--|-------------------|------------------------------|--|-----|-------------------|--------------------|--|----------| | #
| Data Element
Description | In-Line
Inspection
Tool Selection | Interpretation and Analysis Of Inspection Results | ¹ bəəM | ^s looT noitseganl | Interpretation and
Analysis of
Inspection Results ² | CIS | As-built Job file | Field Districts or | noisiviO
notice | Comments | | 4.6 | Test point locations (pipe access points) | | May provide geographic reference for ILI run | a | N/R | ນ | × | | x x | CPA Records | | | 4.7 | CP evaluation criteria | | Used in post-assessment analysis | D | N/R | ၁ | | | | CPA
Records,
Paradigm | | | 4.8 | CP maintenance history | | Support root cause analysis and CIS survey | D | N/R | C | | | × | | | | 4.9 | Years without CP applied | | Negatively effects ability to estimate corrosion rates | Q | N/R | ၁ | | × | × | | | | 4.10 | Coating type - pipe | | Coating type may influence time at which corrosion begins and estimates of corrosion rate based on measured wall loss. | D | N/R | . c | × | × | | | | | 4.11 | Coating condition | | May help with root cause analysis of anomalies | D | N/R | ၁ | × | | × | Direct
Assessment | | | 4.12 | Current demand | | Support root cause analysis and CIS survey | D | N/R | ט | | | × | CPA Records | | | 4,13 | CP survey data/history | | Support root cause analysis and CIS survey | Q | N/R | C | | | | CPA Records Paradigm, Corrosion Group | | | 5.0 Oper | 5.0 Operational Data Operating stress level, pressure, flow rate | For controlling the pigging velocity | Impacts critical anomaly size | Ж | R | R | × | :
 | | GSO, TSP | | | 5.2 | Monitoring programs
(patrol leak surveys etc.) | | May impact repair, remediation and replacement schedules. | D | R/R | Ď | | | | Corrosion
Group, Form
4110 | | | 5.3 | Pipe inspection reports-
excavation | | Provide useful data for post-assessment
analysis or data verification | D . | N/R | ၁ | × | | × | Fc | | | 5.4 | Repair history/records, steel/composite repair sleeves, repair locations | | Provide useful data for post-assessment analysis or data verification | D | N/R | ၁ | × | | × | Form 4110 | | | 5.5 | Leak rupture history | | Provide useful data for post-assessment analysis | D | N/R | C | × | | × | | | | 5.6 | Type and frequency of third party damage (review construction activities with operating personnel) | , | High third party damage areas may have increased coating fault anomalies. | x | N/R | & | × | | × | Form 4110 USA Data Base Patrol Records | | | 5.7 | Other prior integrity related activities – CIS, ILI runs, etc. | | Useful post-assessment data | м_ | N/R | * | × | | | Corrosion
Group,
System | | | | Comments | | | | | | | | | | | | and the second s | | | | |--------------|--|-----------|-----------------------------------|--|--|-----------------------------|--|--|---------------------------------
---|---------------------------------|---|--|--|--|--| | G0 1 35 | TothO | Integrity | | | SCADA | | | | | | | Maintenance
Records | | | Form 4110 | | | ource | Districts or Division | | | × | | * | < | | × | × | × | × | | | | × | | Data Source | Field | | | × | | | < × | × | × | × | | | . : | | | | | | olft dot tlind-sA | | × | _ | | | | | | | | | | × | | | | | CIS | | × | _ | | ÷ | × | × | × | × | | | | × | × | × | | ents | bns noitsterpresint
to sisylsnA
^f etluseM noiteegal | | ၁ | Ö | ၁ | | ۵ ۵ | ပ | Ω | Ω | O | ٥ | | ပ | ပ | O | | Requirements | Inspection Tool ² | | N/R | N/R | N/R | 9 | N/R | N.X. | Ω | Q | N/R | N/R | | O | ပ | ပ | | Rec | ¹ h99N | | D | Ω | Д | ٤ | ДΩ | Q | Q | D | D | D | | Ω | Ω | Ω | | | Interpretation and Analysis
Of Inspection Results | | Affects manufacture threat review | Potential 3 rd party damage | Possible locations for SCC, Influence of activating manufacture defects. | | minuence post-pigging dig pian. To establish threat for potential IC, influence post-pigging dig plan | Influence Root Cause analysis, post-pigging dig plan, and the LTIMP prevention and mitigation plan. | | influence Kool Cause analysis, post-pigging dig plan, and the LTIMP prevention and mitigation plan | Influence Root Cause analysis, post-pigging dig plan, and the LTIMP prevention and mitigation plan | Influence Root Cause analysis, post-pigging dig plan, and the LTIMP prevention and mitigation plan | | Description | In-Line
Inspection
Tool Selection | | | | | | Addition to the second desired | THE TAX TA | | MARIN TO THE REAL PROPERTY OF THE | | | | Will affect tool
selection | Will affect tool
selection | | | | Data Element
Description | | Hydro test dates/pressures | Known areas of shallow cover | Location of abnormal pipe operating temperatures | 6.0 Internal Corrosion (IC) | Received gas from gathering or storage lines | Drip location | Drip fluid analysis | Inhibitor injection | Previously "pigged" | Corrosion monitoring (LPR probes, weight loss coupons, corrosometer probes, etc.) | Spot | rear installed, mill, seam
type, etc. per RMP-06
Section 3.5 | Records of hard spot
failures | Abnormal CP levels | | | A * | | 5.8 | 5.9 | 5.10 | 6.0 Inter | 6.2 | 6.3 | 6.4 | 6.5 | 9'9 | 6.7 | 7.0 Hard Spot | 7.1 | 7.2 | 7.3 | | Form B | : Sufficie | Form B: Sufficient Data Analysis Form | ysis Form | | Rei | Reference: Section 3.7 | |----------|--------------------------|---------------------------------------|-----------|---------------|---|---| | STARTING | MICE POINT: | | | | | | | ENDING M | LE POINT: | | | | Ŗ. | PROJECT MANAGER: | | SUFFICIE | SUFFICIENT DATA ANALYSIS | ANALYSIS | | | | | | Missing | Required D | Missing Required Data Elements | | | 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | | | ₽ | | Data Element
Description | int
n | Pipe Segments | Reason for missing data | Explanation why it is not needed (if any) | | | - | | | | | | | | | | | | • | - | Sufficie | Sufficient Data: | Yes | No | ILI Engineer: | | Date: | | Form | |-------------| | Analysis | | Feasibility | | Form C: | REFERENCE SECTION: SECTIONS 3.8 PROJECT MANAGER: STARTING MILE POINT: ENDING MILE POINT: LINE NUMBER: Instructions: Analyze each data and note any of the issues listed below. In answering the question include the following: 1) Any adverse conditions that may make the pipe segments infeasible to ILI. Refer to Table 3.3.1 for guidance. 2) Any special considerations, techniques that need to be incorporated or considered in conducting the ILI to over come the adverse conditions 3) A conclusion on the feasibility of conducting an ILI for all the pipe segments in the ILI project ILI FEASIBILITY ANALYSIS | Corrosion Control | Soils/Environmental | Construction
Related | Pipe Related | ID # Data Categories | |-------------------|---------------------|-------------------------|--------------|--| | | | | | <u>8</u> | | | | | | Can existing In-Line Inspection tools be applied to the pipe segments identified in the ILI project and be expected to provide meaningful results on potential locations where the pipe wall is damaged? | | | | | | Direct Examination Is it physically and economically feasible to gain access to the pipeline to conduct direct examination and be expected to gain meaningful data? | | Š | |-------------| | · [| | Yes | | I Feasible: | | Date: | Date: | |---------------|----------------------| | | | | ILI Engineer: | ILI Program Manager: | NOTE: Signing this form confirms authorization of forms A-C. Form D: Above Ground Marker Locations Reference Section: Section 4.2 | | | Comments | | | The state of s | embel de l'argument l'argum | The state of s | The second design and | a reference and a second secon | | | The state of s |
--|--------------------|--|--|--|--|--
--|---|--|--|---|--| | | Project Manager: | Type of Marker ³ | Arrando e constante de la cons | | | | | | | | Date: | | | | | Type of AGM? | **** | | | | | | | | | | | | | Depth of
Cover ¹
(feet) | | | | | | | | | | | | | | Ground
Elevation
(UTM NAD83)
(feet) | | | | | | | | | • | | | | | Easting Northing (UTM NAD83) (UTM NAD83) (UTM CHEIS) | | | | | | | | | | | | Attached to the state of st | | Easting
(UTM NAD83)
(meters) | | | | | | | | | | | | reflection . | | Above
Ground
Distance
Between
AGMs
(feet) | | | | | | | | | ILI Engineer: | , | | Line Number: Starting Mile Point: | Ending Mile Point: | Mile Point
(From GIS) | | | | | | | | | ======================================= | | | ⊔
Startinç | Ending | Above
Ground
Marker# | | | | | | | | | | | (1) To top of pipe (2) Examples include - Point on line, major pipe appurtenances (3) Examples include - Concrete, iron pipe, rebar, nail and shine, etc. | Form E: II | J Vendo | Form E: ILI Vendor Qualification Form | | REFERENCE: SECTION 4.3 | | |------------------------------|---------------------------
--|--|--|------| | а | LIT METHOD ¹ : | ¹ ; | | VENDOR NAME: | | | INSTRUCTIONS | : Paragraph | INSTRUCTIONS: Paragraph 43.1.2 in the ILI Procedure provides instructions on completing and filing of this form. | of this form. | | | | Specification Content Review | Content F | Review | | | | | Acceptable Acceptable | cceptable | | Comments | nts | | | | | Safety | The state of s | | | | | | Sizing Accuracy | | The state of s | 1 | | | | Caliper Accuracy | | The enterpretation of the state | | | | | Geospatial Accuracy | - Terminal Modern Policy Community Control of the Control of the Community Control of the C | TO AND LOOK OF THE PROPERTY | | | | | Operator Qualifications | The second secon | the state of s | | | | | Schedule | | The state of s | | | | | Report Format | | | | | General Co. | mments/) | General Comments/Exceptions: | | | | | | | The state of s | | and the second s | | | | | | energy philippe parameters | | | | | | | | | 1 | | | | about the second | | | | | | | | | | | | | | | | The second secon | | | | | | | | | | Approved A | Not
Approved | | | | | | | | Comment: | | | 1 | | ILI Engineer: | ::
 | | Date: | | | | п т в | | | | | | | ILI Frogram Manager: | n Manag | ger: | Date: | | | | (1) MFL, TFI, EMAT, etc. | I, EMAT | T, etc. | 4 | 4 | 4/08 | <u>Form F</u>: Immediate Anomalies Analysis (To be completed when Immediate Anomalies are received.) | - executive and indicate the second | Comments | |--|-------------------------| | 5.3, 5.4 | sibq to %08 | | Sections 5.3, 5.4 | (4)sip4 | | | E)(titroit9 | | Reference Section: ILI Run Date: PG&E Notification Date ¹ : Project Manager: | Assessment | | Referen
IL
3&E Notific
Projec | ક્વ | | ď | 40AM | | | łd | | | нсь? (үм) | | | Class
noitsool | | |
ebs12 | | | .T.W | | | .a.o | | | - GOAMIA
(hoqeЯ IJI) | | | O'clock
Position | | | นาธิบอา | | | Dent Dat | | entity and the first of fir | lleW whit % | | Line Number:
Starting Mile Point:
Ending Mile Point: | fype of (2) | | Startir | ILI Log
Distance | | | dW | | Con | | | | | | | | | | | | | | |--------------------|--|--|--|--|--|--|--|--|----------|----------------------------|-----------------|---------------------|---| | %08 | | | | | | | | | | | | | | |)d | | | | | | | | | | | | | | |)i1 q | | | | | | | | | | on Date: | | | | | l/Jd | | | | | | | | | | If Yes, Notification Date: | | | | | | | | | | | | | | | . If Yes, | | | | | W | 8 |
 | | | HC⊳ | | | | | | | | | | | Date: | Date: | | | ΓΟ!
C | | | | | | | | | | | | | | | 9 | | | | | | | | ure is:
n Date: | . Date: | (X/N): | | | | | ١ | | | | | | | | press
catior | uction | ition? | | | | |) | | | | | | | | ating
Notifi | e Red | Cond | | | | | ורו ו)
אוום | | | | | | | | fe oper
GSO | ressur | Related | | | | | .o
∘o | | | | | | | | he sa | <u>.</u> | fety F | | | | | ₽ Τ | | | | | | | | ove, t | | Sa | | | | | % | | | | | | | | on ab | | | | | | | 11 % | | | | | | | | aluatio | | * | | | | | γT
oibnl | | | | | | | | Per the evaluation above, the safe operating pressure is: GSO Notification Date: | | | | anager: |) | | al
Sia | | | | | | | | | | | ILI Engineer: _ | Li Program Manager: |) | | | | | | | | | | | | | I.J Enç | LI Pro | | (1) The date the ILI vender notifies PG&E of an immediate anomaly.(2) Metal loss-external, metal loss-internal, dents, etc.(3) See Table 5.5.1(4) Pdis equals the highest pressure during the ILIT run or the maximum pressure between the ILIT run and the time the immediate anomalies are identified. | Form | G: Ano | Form G: Anomaly Prioritization and Direct Examination Form (Insp | lization and | Direct | Ехап | inati | on Form | (Inspe | tion/R | ection/Repair Plan) | lan) | | | | | Reference Section: | Section: | Sect | Sections 5.4, | 5.5 | ł | |------------|------------------------|--|--------------------------|-------------|------------|-------------|---------------------|-------------------------|----------|---------------------|-------|-------------------|------------|----|----------|--------------------|-------------------------------|-------------|---------------|----------|----| | eg 01) | used for e.
L | excavations using
Line Number: | g ILI data.) | | | | | | | | | | | _ | LI Vendo | Final Rep | ort Date: | | | | | | | Startir | Starting Mile Point: | | | | | | | | | | | | | | ILI Run Date: | un Date: _ | | | | | | | П
ngi | Ending Mile Point: | | | | | | | | | | | | | | Project | Project Manager: | | | | - | | | | | | ILIF | ILI Report | | | | | | | | | | | Asse | Assessment | | | | П | | Dig Site # | ЧМ | ILI Log
Distance | to eqyT
(f)noitsaibni | llsW u1dT % | 3neG % | րերը
Մեր | O'clock
Position | Pf/MAOP
(ILI Report) | .0.0 | .T.W | Grade | Class
Location | HCA? (Y/N) | Jd | qOAM | qoam\iq | % erileqiq
38 SYM2
40AM | Priority(2) | Dig
(N/Y) | Comments | <u> </u> | | | | | | 1 | | | | | | | T | · | П | 'I | | | | | | | | | | | | | | _ | _ | 1 | | | | | | | | 1 | | | | | | | | | | | | | Ì | | П | | | | | | | | _ | | | | | - | | _ | - | | | | | | | 7 | | | | | | | | | | | | | | | | 1 | | | | | | | 1 | | | | | | | | | | | \dashv | | | | | | | | | | | | Т | | | | | | | | | | | | | | | | + | | | | | | ; | T | | | | | | | Ť | | | | | | | | + | | | | | | | | | | | | | | | T | | | | | | | | | | | | | | | | T | T | | | | | | | ļ <u>-</u> | ILIE | ILI Engineer: | | | | | | | | | | | | | Date: | | | | | | | | = | ILI Program Manager: | Manager: | | | | | | | | | | | | | Date: | | | | | | | Mar | ıager of | Manager of Technical Services: | Services: | | | | | | | | | | | | | Date: | (1) M | etal loss
e table (| Metal loss-external, metal loss-internal, dents, etc. See table 5.5.1 | etal loss-inte | mal, de | nts, el | <u>છ</u> | | | | | | | | | | | | | | | | | LOLIU H: DI | irect Examination Data Sheet - Page | | | | | | |--|--|---|---|--|------------|--| | | <u>DA/ILI</u>
Route Number: | DA
N-Segment; | | اِ
ILI Log Distance: | <u>LI</u> | | | E | xamination Date: | IMA Number: | | RMP-11 Ref. Section: | | | | - | Mile Point: | | | Reference Girth Weld: | | | | | on Performed By:
Project Manager: | | | Distance From Girth Weld: | <u></u> | | | | Approved By: | - Stationings | | | | | | | Order Number: | _ | | | | | | Excav | ration Priority: | | Excavation Reason | | | | | | mmediate Scheduled (For ILI - | 1 Year Other) | ECDA | ILI Recoat | | | | N | Monitor Effectiveness | CDA | CDA | Other | | | | if near | ctical, take P/S or CIS reads before excavat | ion: | | | | | | Excavation D | Detalls: Centerline on GPS Coordinates (F | Based on GIS): | | | | | | | Northing:
Easting: | | Planned Excavation Length
Actual Excavation Length | (Ft.): | | | | | Centerline on GPS Coordinates (I | Incorrected Cield Magnurame | | | | | | | Northing: | | ni). GPS File Na | me: | | | | | Easting: | | | | | | | | Centerline on GPS Coordinates (6 | | : | | | | | | Northing: | | | | | | | 1.0 Data Be | efore Coating Removal | | | | | | | | Native Soil Type: Clay | Rock Sand | Loam Wet | Other | | | | 1.1 | Mattre Suit Type. | | LI LOSIII WEL | Outer | | | | 1.1 | la Backfill Material Found Sand | Slurry Native | Denth of Cover | (Ft.): | | | | | Comments: | | Dopar or Gover | | | | | 1.2 | Coating Type: HAA | Somastic Plastic | Tape Wax Tape | FBE | Powercrete | | | | Bare/None Paint | Other: | Comments: | | • | | | | Coating Thickness (Inches): | | mber of Layers: | | | | | | | | | | | | | 13 | Holiday Testing Performed? Yes | No Voltage Used | • | Man Location of Holidays I | Relow | | | 1.3 | Hollday Testing Performed?: Yes | | | Map Location of Holidays I | | | | 1.3
1.4 | Hollday Testing Performed?: Yes Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): | | :Comments: | | | | | | Device Used: Coil | Wet Sponge | | | | | | 1.4 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): | Wet Sponge | Comments: | DS: | | | | 1.4
1.5 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin | US: | Comments: | DS: | | | | 1.4
1.5 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): | US: | Comments: | DS: | | | | 1.4
1.5
1.6 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin | US: | Comments: Soil Bo | DS: | | | | 1.4
1.5
1.6
1.7 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin Soil Sample Location: Comments: Ground Water Present?: Yes Comments: | US: | Comments: Soil Bo | DS: | | | | 1.4
1.5
1.6
1.7 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): | US: No Sample(s) | Comments: Soil Bo | DS:xNo Sample | | | | 1.4
1.5
1.6
1.7 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): | Wet Sponge US: No Sample(s) Adhered to Pipe | Comments: Soil Bo | DS:xNo Sample | | | | 1.4
1.5
1.6
1.7 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin Soil Sample Location: Comments: Ground Water Present?: Yes Comments: Coating Condition: Good-Poor-Comments: | Wet Sponge US: No Sample(s) Adhered to Pipe | Comments: Soil Bo | DS: No Sample y Disbonded or Degraded | pH: | | | 1.4
1.5
1.6
1.7 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin Soil Sample Location: Comments: Ground Water Present?: Yes Comments: Coating Condition: Good Poor- Comments: | Wet Sponge US: No Sample(s) Adhered to Pipe | Comments: Soil Bo | DS:xNo Sample | pH: | | | 1.4
1.5
1.6
1.7 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin Soil Sample Location: Comments: Ground Water Present?: Yes Comments: Coating Condition: Good-Poor-Comments: | Wet Sponge US: No Sample(s) Adhered to Pipe | Comments: Soil Bo | DS: No Sample y Disbonded or Degraded | pH: | | | 1.4
1.5
1.6
1.7 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): | Wet Sponge US: No
Sample(s) Adhered to Pipe | Comments: Soil Bo | DS: No Sample y Disbonded or Degraded | pH: | | | 1.4
1.5
1.6
1.7
1.8 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): | Wet Sponge US: No Sample(s) Adhered to Pipe | Comments: Soil Bo | DS: No Sample y Disbonded or Degraded | pH: | | | 1.4
1.5
1.6
1.7
1.8 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin Soil Sample Location: Comments: Ground Water Present?: Yes Comments: Coating Condition: Good-Poor- Comments: Map of Coating Degradation*: *Note any calcareous deposit locations ock | Wet Sponge US: No Sample(s) Adhered to Pipe | Comments: Soil Bo | DS: No Sample y Disbonded or Degraded | pH: | | | 1.4
1.5
1.6
1.7
1.8 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin Soil Sample Location: Comments: Ground Water Present?: Yes Comments: Coating Condition: Good-Poor- Comments: Map of Coating Degradation*: *Note any calcareous deposit locations ock | Wet Sponge US: No Sample(s) Adhered to Pipe | Comments: Soil Bo | DS: No Sample y Disbonded or Degraded | pH: | | | 1.4
1.5
1.6
1.7
1.8 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin Soil Sample Location: Comments: Ground Water Present?: Yes Comments: Coating Condition: Good-Poor- Comments: Map of Coating Degradation*: *Note any calcareous deposit locations ock | Wet Sponge US: No Sample(s) Adhered to Pipe | Comments: Soil Bo | DS: No Sample y Disbonded or Degraded | pH: | | | 1.4
1.5
1.6
1.7
1.8
1.9 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin Soil Sample Location: Comments: Ground Water Present?: Yes Comments: Coating Condition: Good Poor- Comments: Map of Coating Degradation*: *Note any calcareous deposit locations Ock Ock | Wet Sponge US: No Sample(s) Adhered to Pipe | Comments: Soil Bo | DS: No Sample y Disbonded or Degraded | pH: | | | 1.4
1.5
1.6
1.7
1.8 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin Soil Sample Location: Comments: Ground Water Present?: Yes Comments: Coating Condition: Good Poor- Comments: Map of Coating Degradation*: *Note any calcareous deposit locations Ock Ock | Wet Sponge US: No Sample(s) Adhered to Pipe | Comments: Soil Bo | DS: No Sample y Disbonded or Degraded | pH: | | | 1.4
1.5
1.6
1.7
1.8
1.9 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin Soil Sample Location: Comments: Ground Water Present?: Yes Comments: Coating Condition: Good Poor- Comments: Map of Coating Degradation*: *Note any calcareous deposit locations Ock Ock | Wet Sponge US: No Sample(s) Adhered to Pipe | Comments: Soil Bo | DS: No Sample y Disbonded or Degraded | pH: | | | 1.4 1.5 1.6 1.7 1.8 1.9 12 o'cl | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin Soil Sample Location: Comments: Ground Water Present?: Yes Comments: Coating Condition: Good Poor - Comments: Map of Coating Degradation*: *Note any calcareous deposit locations ock ock | Wet Sponge US: No Sample(s) Adhered to Pipe | Comments: Soil Bo | DS: No Sample y Disbonded or Degraded | pH: | | | 1.4
1.5
1.6
1.7
1.8
1.9 | Device Used: Coil Pipe-to-Soil Potentials in Ditch (-mV): Comments: Soil Resistivity in Ditch (Ω-cm): Method: 4-Pin Soil Sample Location: Comments: Ground Water Present?: Yes Comments: Coating Condition: Good Poor - Comments: Map of Coating Degradation*: *Note any calcareous deposit locations ock ock | Wet Sponge US: No Sample(s) Adhered to Pipe | Comments: Soil Bo | DS: No Sample y Disbonded or Degraded | pH: | | | rm H: Di | rect Examinati | | eet - Page 2 | of 10 | D.A | | | | 11.1 | - | | |----------|----------------------------------|-------------------|---------------|----------------|----------------------------|------------------|-----------------|-------------------|------------------|-------------|----------| | | Route Number: | <u>VILI</u>
: | | N | <u>DA</u>
-Segment: | | | ILI Log | ILI
Distance: | | | | E | xamination Date: | - | | - | A Number: | | | RMP-11 Re | f. Section: Ta | ble 5.6.2 | | | | Mile Point: | | | - | _ | | | Reference G | | | | | | n Performed By: | | | Regio | n Number: | | | Distance From | Girth Weld: | | | | PG&E | Project Manager:
Approved By: | | | | n # (ICDA):
Stationing: | | | | | | | | | Order Number: | | | | | | | | | | | | 1.10 | Photos Taken?* *See Photo Log | | 1 | - | | | | | | | | | 1.11 | Coating Sample | Taken?: | Yes | ☐ No | Locat | ion of Sample: | | | | | | | 1.12 | Liquid Underne | ath Coating?: | Yes | No | | , pH of Liquid: | | | | | | | 1.13 | Corrosion Prodi | uct Present?: | Yes | No No | If Yes | s, Was Sample | Taken?: | Yes | ☐ No | | | | 1.14 | Soil pH (Sb Elec | :trode): | Upstream: | | Down | stream: | | - | | | | | Data Af | ter Coating Re | moval | | | | | | | | | | | 2.1 | Pipe Temperatu | re (°F): | | | ₽ | leasured Pipe | Diameter (In.): | | | | | | 2.2 | Weld Seam Typ | e: 🔲 | DSAW | SSAW | ERW | SML | .\$ | | | | | | | | $\overline{\Box}$ | Spiral | Lap | Flash | Ao: | Smith | If can't dete | rmine, visually | | | | 2.3 | Girth Wold Coo | | |] | | | | 4 | creetch to loca | | | | 2.3 | Girth Weld Cool Northing: | | | | | | | | (see Table 5. | 7.3, | | | | Easting: | | | | | | | Element 2.2 | 2) | | | | | Elevation: | | | | | | W | eld Clock Posi | tion: | | | | 2.4 | Damage Found: | | | | | | | | | | | | | Corrosion Da | mage | Yes _ |] No | Me | echanical Dam | age | Yes _ |] No | | | | | Other Damag | je: | | | | | _ | | | | | | 2.5 | UT Wall Thickne | ess Measuren | nents: TDC: | | 1 O'clo | ck: | 20 | O'clock: | | 3 O'clock: | | | | | | 4 O'clock | | | ck: | | O'clock: | • | 7 O'clock: | | | | | | 8 O'clock | | 9 Oʻclo | ck: | 10 (| O'clock: | - | 11 O'clock: | | | | | | | | | | | | | | | | | UT Wall Thickne | - | • | | • | H-Form electr | onicaliy. See p | age 6 of 10. | | | | | 2.6 | Wet Fluorescen | | - | Comment | | | | <u></u> | | | | | | Were there any I | inear indication | ns? | Yes | | | E report electr | | | | | | 2.7 | Take Photos to | Document Co | rrosion and C | ther Anomali | | sport to include | black light and | ı wnite light pri | otos ot indicati | ions. | | | | *See Photo Log | | | | | | | | | | | | 2.8 | Overview Map o | f Corroded A | rea*: | | | | | | | | | | | *See Pit Depth M | | | al Information | | Zero Referen | nce Point: | | | | | | | *Note any calcar | eous deposits. | | | | | | | | _ | | | | | | | | | | Flow - | | | | | | 12 o'ck | ock 1 | 7 | 13 | 19 | 25 | 31 | 37 | 43 | 49 | 55 | 1 | | | ļ | | <u> </u> | | <u></u> | | <u> </u> | <u> </u> | <u></u> | ļ | | | | . 2 | 8 | 14 | 20 | 26 | 32 | 38 | 44 | 50 | 56 | 1 | | 9 o'cl | ock | 9 | 15 | 21 | 27 | 33 | 39 | 45 | 51 | 57 | | | | ľ | ľ | [| <u> </u> | <u> </u> | [" | | [] | <u> </u> | [| | | 6 oʻci | ock 4 | 10 | 16 | 22 | 28 | 34 | 40 | 46 | 52 | 58 | 1 | | | | | <u> </u> | | <u> </u> | <u> </u> | L | | <u> </u> | | | | | 5 | 11 | 17 | 23 | 29 | 35 | 41 | 47 | 53 | 59 | ļ. | | 3 o'cl | ock | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | | | 12 o'cle | ock T | - | [" | Ī-' | | [| 1- | [| I ' | [| 1 | | | eet O | <u> </u> | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
10 | | Route Number | <u>A/ILI</u>
': | oneet - Pag | | N-Se | DA | <u>.</u> | 1.00 | | | - _ | ILI | Log Dis | <u>][</u>
stance: | | | |--|--
--|--|----------------------------|--|------------------|---------------|--------------------|---------------------|-------------------|---------|---------------------------------|--|---------|-------| | Examination Date
Mile Poin
nination Performed By
PG&E Project Manage
Approved By
Order Numbel | t:
::
:: | | Su | Region N | | | | | | R | eferenc | Ref. Si
ce Girth
rom Girt | | Table 5 | .6.2 | | Excavation Drawing: | | | | | | _ | | | | | | • | | | | | At minimum draw pi
Place an arrow on ti | pe elevat
ne drawin | on profile and grant gra | irection o | e stationin
of gas flov | g of 1) 10
vin the r | ow poi
egion(| nt and | o 2) ci
Other I | nticai i
abels i | nciinai
may al | so be | gie.
added | (e.g. "t | o Stati | ion") | | | | | | Inc | lination A | Angle | (degr | ees) | | | | | | | ٦ | | I I | | | 1 | | 1 1 | | | l | | | ļ | | i 1 | | | | | | | | | | | | ************ | | | | | | | | | | | | | | | | | | ļ | | | | | - | | | | STATE OF THE PROPERTY P | | | | The state of s | | | | | | | | The state of s | | | | | | | | | | | | | | 130000 | | | 1 | Additional and the second | | | | - | | | | | | | | | | | | | monacoparity of the particular | | | | | | | | | | | | Annual Property Control of the Contr | | | | | 77 | 1 1 | | | <u> </u> | | 1 | 1 | | 1_ |] | | 1 | | | 1 | | | | | - Control of the Cont | | | | | | | | | | | | | | | and the second | | | AMERICALY | Diet | / | <u> </u> | | | | | | | | _ | | • | | | | | | ance (| | | | | | | | | | | STATIONING | | | | | Flo | W | \Rightarrow | | | | | | • | STATIC | NIN | OTES: (Record stati | oning
and | I names of ne | arby land | imarks su | ıch as cr | eeks a | and ro | ads. | Provid | de any | additi | onal in | formati | on tha | t ma | | help in spatia | illy positic | oning pipe): | #### EXTERNAL PIT DEPTH MEASUREMENT GRID SHEETS | • | R | oute Nu | <u>DA/</u>
mber: | <u>ILI</u> | | | | | N-Se | | <u>) A</u> | | | | | !L1 l | _og Dis | tance: | <u>LI</u> | | | | |--------------|------------------|--------------------|---------------------------------------|------------|--|--|-----|-------|-------------------|------------|------------|------|----------|----|------|----------|---------|---------|-----------|-------|----|----| | | | nination | Date: | | | | | | IMA N |
umber: | | | | | R | MP-11 | Ref. S | ection: | Table | 5.6.2 | | | | | | | Point: | | | | | | | | | | | | | | | Weld: | | | | | | Examinat | | | | | | | | Re | gion Na | umber: | | | | | Dist | lance Fr | om Girt | h Weld: | | | | | | PGat | : Pro | ject mai
Anntov | nager:
ed Rv: | | | | — | ounre |) # nvit
Stati | ionina: | | | | | • | | | | | | | | | | C | rder Nu | mber: | | | | | | | | | | | | • | | | | | | | | | | | | - | Grid Size | = | inc | ١x | inch | (specify | grid siz | :e) | | | | | | | | | | | | | | | | | Clock Positi | ion (s | pecify b | elow) | _ | Δ | nomakr | # · | | | | | | | | | Grid | a # | | | | | | | | | | | | ſ | iioiiiaiy : | · · · · · · · · · · · · · · · · · · · | | | | | | | | • | 011 | | | | | | | | | | | | | r | 1 | 3 | 4 | 5 | - 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17_ | 18 | 19 | 20 | 21 | 22 | | • | ^ _ | ! | В | | | <u>.</u> | ı | c | I | ₽ | | | | | | | | _ | | | | | | | | | | | | | | | 1 | E | F | (| 3 - | 1 | н | | | | | | | | | | | | | | | | _ | | | | | | | | 1 | | | | †- | | | | <u> </u> | | | | | | | | | | | | | | | | J | | | - | | | | | | | | | | | | | _ | | | | | | | 1 | ĸ | ᆫ | i | νď | | | | | | | | | | | | | | | | | | | | | | | 1 | N | (| ٦ | | | | +- | 1, | | | | | | | _ | | | | _ | | | | | | | | ┍┞╴ | | | | _ | | | | | | | | | | | | | | | | | | | • | ا ۵ | ļ | <u>ا</u> ۽ | | | ┪ | † | 1 | | | _ | | | | | | | | | | | | | | | ; | s | | † | | | | | | | | | | | | | | _ | | | | | | | | ┰┞╴ | | | | + | | 1 | | | | | | | | | | | | | | | | | • | u - | | + | + | | | | | | | | | | | | | _ | | | | | | | | ᄼ | | | - | + | | | | | | | | | | | | | | | | | | | 1 | ~ - | | | | <u> </u> | | | | | - | | | <u> </u> | | - | | _ | | | | | | | | \downarrow | | + | | +- | | - | | | | | | | | | | | | | | | | PIT DEPTH GRID 1 OF 2 50 6/10/08 #### Form H: Direct Examination Data Sheet - Page 5 of 10 #### EXTERNAL PIT DEPTH MEASUREMENT GRID SHEETS | Examinat
PG&E | Exam | oute Num
ination I
Mile P
erformed | Date: | | | | | Reg | N-Seg
IMA No | gment:
.mber; | <u>A</u> | | | | Re | MP-11
ferenc | Ref. Se
e Girth | stance:
ection:
Weld: | Table | | | | |------------------|-------------|---|------------|--|----------|-----------|------------------|----------|-----------------|------------------|----------|------|------|-----|--------|-----------------|--------------------|-----------------------------|----------|---------|----------|----| | PG&E | Proj | ect Mana | iger: | | | | | Subreg | jon#(| (ICDA); | | | | | | | | | | | | | | | 0 | Approved | l By: | | | | | | Stati | ioning: | | | | | | | | | | | | | | | U, | uei ituii | 3rîd Size = | | Inch | x | inch (s | specify: | grid size | ∌) | | | | | | | | | | | | | | | | | Clock Positi | on (s | ecify bel | ow) | _ | , | momaly # | # : | | | | | | | | | Grid | d #: | 1 2 | <u>3</u> | 4 | <u>5</u> | <u> </u> | - 7 - | - 8
 | 9 | 10
 | 11_ | 12 | 13 | 14_ | 15
 | _ <u>16</u> | 17 | 18
 | T 19 | 20 | 21 | 22 | | , | `L | | | <u> </u> | ļ | <u> </u> | ļ | | <u> </u> | | | | | | | | | | | | | | | E | 3 | ı | ĺ | | | | | | ľ | | | | | | | | | | | | | | | (| ٦, | Ţ | \Box | | 1 | | | | | | | _ | | | | | | | | | | | | | | | <u>.</u> - | +- | | <u> </u> | \vdash | | 1 | - | | | | <u> </u> | <u> </u> | | | | | | | | | | - | | | | | | <u> </u> | | - | <u> </u> | | | | | | | | | | | | | | | <u> </u> | | <u> </u> | | | (| 1 | | | _ | | | | | | | | | | | | | | | <u> </u> | | | | | ŀ | ┖ | | | | | | ļ <u> </u> | | | | | | | | | | | | | | | | | I | , | , | ŀ | Ϋ́ | | | | | | | | | | | | | | | | | | | ,,,,,,, | | | | Ĺ | _ | _ | | | | | | | | | | | | | | | | <u> </u> | - | | | | | N | $A \vdash$ | ١ | ↓ ⊢ | | | <u> </u> | | | | | | | | | | | | | | | - | | | | | | - | | ╁ | | | | | | | - | | | | | | | | | | | | | | | \vdash | | - | <u> </u> | F | \vdash | - | - | - | | | | <u> </u> | | <u> </u> | | | | | | | | | | | | | | (| _ | | | | <u> </u> | | | | | | | | | | | | | | <u> </u> | | <u> </u> | | | F | `Ĺ | | | | | | | | | <u></u> _ | | | | | | | | | | | | | | 8 | <u>`</u> | . 1 | ٦ | | | | | | | <u> </u> | | | | | | | | | | | | | | | | ι | , [| ١ | $/ \square$ | | | | | | | | | | | | | | | | | | | , | | | | V | ٧ | | | | | | | | | | | | | | | | | | _ | | | | |) | T | | | | | | | | | | | | | | | | | | <u> </u> | | | | PIT DEPTH GRID 2 OF 2 #### INTERNAL CORROSION PIT DEPTH GRID | DA/I | <u>LI</u> | <u>DA</u> | <u>1</u> 1 | <u>.(</u> | |--------------------------------|-------------|-------------|---------------------------|-------------| | Route Number: | N | -Segment: | ILI Log Distance: | | | Examination Date: | lm/ | A Number: | RMP-11 Ref. Section: | Table 5.6.2 | | Mile Point: | | | Reference Girth Weld: | | | Examination Performed By: | Region | n Number: | Distance From Girth Weld: | | | PG&E Project Manager: | Subregior | 1 # (ICDA): | | | | Approved By: | | Stationing: | | | | Order Number: | | | | | | Grid Size = 1 Inch x 1 | Inch | | | | | Clock Position (specify below) | | | | | INTERNAL CORROSION GRID 1 of 1 #### **COATING DAMAGE** | E | <u>DA</u>
Route Number:
xamination Date: | <u></u> | <u>DA</u>
N-Segment:
IMA Number: | <u> L </u>
 ILI Log Distance:
 | |-------------|---|--|--|---| | Examination | Mile Point:
on Performed By:
Project Manager: | - | Region Number:
Subregion # (ICDA): | Reference Girth Weld: Distance From Girth Weld: | | | Approved By:
Order Number: | | Stationing: | | | NO. | FEET FROM
REFERENCE | O'CLOCK | MAX LENGTH (IN.) | MAX CIRC EXTENT (IN.) | | | | <u> </u> | - | | | | | | | - | ļ | | | | | | | | | | | | | | | | | | | | | | | | 1 | - 111-1 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | | | | · · | 53 6/10/08 #### **CORROSION LOG** | | DA | ЛL <u>I</u> | <u>DA</u> | | ı | <u>LI</u> | |---------|--------------------|-------------|----------------------|------------|----------------------|---------------------| | | Route Number: | | N-Segment: | • | ILI Log Distance: | | | | Examination Date: | | IMA Number: | | AP-11 Ref. Section: | Table 5.6.2 | | | Mile Point: | | | Ref | erence Girth Weld: | | | Examina | tion Performed By: | | Region Number: | Dista | nce From Girth Weld: | | | PG& | E Project Manager: | ··· | Subregion # (ICDA): | | | | | | Approved By: | , | Stationing: | | | | | | Order Number: | | | | | | | | | | | | | | | | FEET FROM | | | | | | | C or EC | REFERENCE | O'CLOCK | MAX PIT DEPTH (MILS) | MAX LENGTH | IN.) MA | X CIRC EXTENT (IN.) | i i | | | | <u></u> | | | | | | | | | - | | | _ | <u> </u> | | | | | | | | | | <u> </u> | , | | | | | | | | _ | | | - | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | <u> </u> | - | | | | | | | | | | | | | | | | | # | | | | ***** | | | | | | _ | - | | | | | | | | | | | | | | | | | **** | | | | | | | | | | | | | | | - | <u> </u> | <u> </u> | | | - | T |
 | | | | | | | #### PHOTO LOG | <u>DA/iLi</u> | <u>DA</u> | <u>LL</u> | |---------------------------|---------------------|----------------------------------| | Route Number: | N-Segment: | ILi Log Distance: | | Examination Date: | IMA Number: | RMP-11 Ref. Section: Table 5.6.2 | | Mile Point: | | Reference Girth Weld: | | Examination Performed By: | Region Number: | Distance From Girth Weld: | | PG&E Project Manager: | Subregion # (ICDA); | | | Approved By: | Stationing: | | | Order Number: | | | | | | | | | | | | PHOTO
NO. | LOCATION | DESCRIPTION | COMMENTS | |--------------|-----------|-------------|---------------------------------------| <u> </u> | - | | | | | <u></u> · | · · · · · · · · · · · · · · · · · · · | | Form H: D | irect Examination Data Sheet - Pa | ge 10 of 10 | | |------------|--|--|----------------------------------| | | <u>DA/ILI</u>
Route Number: | DA
N Segments | <u>ILI</u>
ILI Log Distance: | | E | Examination Date: | N-Segment:IMA Number: | RMP-11 Ref. Section: Table 5.6.2 | | | Mile Point: | | Reference Girth Weld: | | | on Performed By: | Region Number: | Distance From Girth Weld: | | PG&E | Project Manager: Approved By: | Subregion # (ICDA): Stationing: | | | | Order Number: | Otatoring. | | | | | | | | 3.0 Recoat | t Data | | • | | 3.1 | Sandblast Media: | Anchor Profile | Measurement: | | 3.2 | Pipe Recoated With: | | | | | Powercrete J Wax Tape | Bar-Rust 235 Dev Grip 238 | Dev Tar 247 Protal 7200 PE Tape | | 3.3 | For Epoxy Coating Systems, Record B | | | | 3.3 | Air Temperature: | Dew Point: | | | | Pipe Temperature: | Relative Humidity: | | | | Time of Day: | · | | | 3.4 | Repair Coating Hardness (If ARC Coat | ling:) | | | 3.5 | Measured Coating Thickness: 3:00 | 6:00 - | 9:00 - 12:00 - | | | Holiday Tested?: Yes | No | | | | Device Used: Coil | Wet Sponge Voltage Used: | Repair All Holidays. | | 3.6 | Coupon Test Station Installed?: | Yes No ETS Installed?: | Yes No | | 0.0 | - | | | | | If Yes, Date Installed: | | | | | Surface Configuration:: Fink | G-5 Box Carsonite Other: | | | 3.7 | Backfill Material: Native | Imported Sand Other: | | | | Coating Protections?: Yes | ☐ No | | | | If Yes, Check One: Rockguar | d Tuf-E-Nuf Conwed Ot | her: | | 3.8 | Pipe-to-Soil Readings Over Bell Hole | | | | | *If specified, a CIS should be done for ag | proximately 100' on either side of the bell hole. Attach | n data. | | | Comments: | | | | | | | | | | | | | | 3.9 | Attach site sketch of excavation site. | | | | 4.0 Repair | Data | | | | | | 4.4 Number of rensire mades | | | 4.1 | Repair Made: Yes No | 4.1 Number of repairs made: | _ | | 4.3 | Repair Type: Metallic Sleeve | Non Metallic Sleeve Replace | Can Filler Metal Other | | 4.4 | Damage Repaired: Corrosion | Mechanical Other | | | | komant | | | | | | | | | | | | | | Misc. Comm | nents/information: | | | | ******* | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | | <u> </u> | hary | |-------------| | G Sumn | | RSTREN | | Examination | | Field | | Form I: | Section 5.6 Reference Section: | Starting Mile Point: Ending Mile Point: | | MP | | | | | | | | | | | | | | | 1 | ILI Program Manager: | |---|--|----------------------------|--|---|---|---|---|----------|---|---|---|---|--|----------|---|---|---------------|----------------------| | | F) | Type of
Indication(1) | | | | | | | | | | | | | | | ILI Engineer: | n Mana | | | ILI Report
(From Form G) | llsW undT % | | 1 | | | | | | | | | | | | | leer: | ıger: | | | port
om G) | 3 Dent | | | | · | | | | | | | | | | | | | | | | ųзвиет | O'clock Position | Priority | lisW undT % | | | _ | | | | _ | 1 | _ | _ | | _ | | Ц | | | | | | fneG % | Гелдір | | | | | 1 | | | | | | | † | | | |] | | | Effective | O'clock Position | | | | | | | | | | | | | | | | | | | Area C | 90AM | | - | | | | | | | | | | | | H | | | | | Effective Area Calculation Based on Field Data | SYMS % enileqiq
qOAM 1s | | | | | | | | | | | | | | | _ | _ | | | Based | (s)14 | | | | | | | | | | | | | | | Date: | Date: | | ⊒ | on Field | qOAM\}q | | | | | | | | | | | | | | ŀ | 7 | - | | ILI Vendor Final Report Date:
Project Manager: | Data | New Priority | | | | | | | | | | | | | | | | | | nal Repo
roject Ma | | Englneer | | | | | | | | | | | | | 1 | П | | | | t Date:
ınager: | | Date | | | 1 | 1 | | <u> </u> | | | | | | | | | | | | | | Repair Required
(Y/N) | | | | | | | | | | | | | | | | | | | Repa | Repair Date | | | | | | | | | | | | : | | | | | | | Repair Information | Comments - Type | | , | | | | | | | | | | | | | | | (1) Metal loss-external, metal loss-internal, dents, etc. (2) Pf = highest burst pressure calculated from RSTRENG # **2MP-11** Form J: (Left Blank Intentionally) material redacted GTR0007175 #### Form K (1 of 2): ILI Root Cause Analysis Report | DATE OF EXCAVATION: MILE POINT: EXAMINATION PERFORMED BY: PROJECT MANAGER: | ILI LOG DISTANCE: RMP-11 Ref. Section: 5.8 Dig Sites: | |---|--| | Description and Extent of Damage: | 7all Loss | | Rocks in Coating: Yes No | Evidence of Shielding: | | Coating Type: HAA Somastic Paint Other | Plastic Tape Wax Tape FBE Other-Epoxy Bare/None Comments: | | Extent of Coating Degradation: | | | Max. Depth of Corr.: | Max Length of Corr.: | | | | | Lab Soils Protocol: Yes No Result: MIC Testing Performed: Yes No Result: PH of Water Under Coating: CIS Result: P/S Sp Additional Testing: | sults [Log (counts/ml)]: SRB APB AERO ANA CIS Over Bell Hole: Yes No No pot Reads in Trench: Yes No Result: | | Comments: | | | Review of CP Maintenance History: Summary Review of Compliance Reads: | | | IIT Results Before Excavation; | | | CIS or P/S Results or P/S After Burial; | | | Other Information: | | | Review of Existing Damage Mitigation | Measures: | | | | 59 4/08 ### Form K (2 of 2): ILI Root Cause Analysis Report LINE NUMBER: ILI LOG DISTANCE: DATE OF EXCAVATION: RMP-11 Ref. Section: 5.8 MILE POINT: DIG SITES: EXAMINATION PERFORMED BY: PROJECT MANAGER: APPROVED BY: Analysis of Data for Root Cause: Root Cause of Damage: Additional Testing, Mitigation and/or Analysis Needed For Long-Term Pipeline Integrity: Lessons Learned: ☐ Yes ☐ No ☐ Yes ☐ No Incorporate Into Procedure? Date: _____ Incorporate Immediately to Future Root Cause? Recommended Items: 4/08 Date: _____ 60 Senior Corrosion Engineer: ______ Date: ______ Manager, Technical Services _____ Date: _____ ## **EMP-11** Form L: (Left Blank Intentionally) material redacted GTR0007178 | Form M: Exception Report | REFERENCE: SECTIONS 7.0 | |--|--| | Line Number: | DATE OF EXCEPTION REPORT: IMA NUMBER: PROJECT MANAGER: | | Paragraph Number of Exception: | | | Requirements of Paragraph (Your own words): | | | Alternative Plan: | | | | | | Keason for Exception. | | | | | | Recommendation: Should the procedure be changed? YES No | | | CPUC Reportable? YES No | | | Will this change jeopardize public safety? YES No Justification: | | | | | | | | | | | | Manager of Technical Services: | | | | |