CorDaptixTM Defining Algorithms
Admin Guide – v1.3.31

Defining Algorithms

In this section, we describe how to set up the user-defined algorithms that perform many important functions including:

· Calculating late payment charges.

· Calculating the recommended deposit amount.

· Calculating the recommended budget amount.

· Calculating deposit interest.

· Implementing special processing when a field activity is completed.

· Constructing your GL account during the interface of financial transactions to your GL.

· And many other functions...

Contents

The Big Picture Of Algorithms
Setting Up Algorithm Types
Setting Up Algorithms
The Big Picture Of Algorithms

Many functions in the system are performed using a user-defined algorithm. For example, when a CSR requests a customer’s recommended deposit amount, the system calls the deposit recommendation algorithm. This algorithm calculates the recommended deposit amount and returns it to the caller.

So how does the system know which algorithm to call? It works like this – when you set up the system’s control tables, you define which algorithm to use for each component-driven function. You do this on the control table that governs each respective function. For example:

· You define the algorithm used to calculate late payment charges on each SA Type that has late payment charges.

· You define the algorithm used to construct the GL account number that is interfaced to your general ledger on your Distribution Codes.

· You define the algorithms used to calculate deposit interest and determine the recommended deposit amount on your Deposit Classes.

· You define the algorithms used to write off debt on the Write-off Controls.

· You define the algorithms used to recommend budget amounts on your Budget Plans.

· The list goes on…

The topics in this section provide background information about a variety of algorithm issues.

Contents

Algorithm Type Versus Algorithm
How To Add A New Algorithm
Algorithm Type Versus Algorithm

You have to differentiate between the type of algorithm and the algorithm itself.

· An Algorithm Type defines the program that is called when an algorithm of this type is executed. It also defines the types of parameters that must be supplied to algorithms of this type.

· An Algorithm references an Algorithm Type. It also defines the value of each parameter. It is the algorithm that is referenced on the various control tables.

Refer to How to Add A New Algorithm for an example that will further clarify the difference between an algorithm and an algorithm type.

How To Add A New Algorithm

Before you can add a new algorithm, you must determine if you can use one of the sample algorithm types supplied with the system. Refer to Setting Up Algorithm Types for a complete list of algorithm types.

If you can use one of the sample algorithm types, simply add the algorithm and then reference it on the respective control table. Refer to Setting Up Algorithms for how to do this.

If you have to add a new algorithm type, you will have to involve a programmer. Let’s use an example to help clarify what you can do versus what a programmer must do. Assume that you cannot use the sample deposit interest algorithm type supplied with the system because you compound interest monthly and the sample algorithm does not compound interest. To do this you must:

· Write a new program to calculate deposit interest in the appropriate manner.

· Create an Algorithm Type called Deposit Interest-Compound Monthly (or something like that). On this algorithm type, you’d define the name of the program that performs the function. You’d also define the various parameters required by this type of algorithm. If we assume that your interest calculation algorithm needs to know the interest rate and the type of adjustment used when the interest is applied to the service agreement’s balance, you’d indicate that this type of algorithm uses:

· A bill factor (to define the interest rate)

· An adjustment type

· After creating the new program and the new Algorithm Type, you can reference it on an Algorithm.

· And finally, you’d reference the new Algorithm on the Deposit Classes that govern commercial and residential deposits.

Setting Up Algorithm Types

The system is supplied with samples of every type of algorithm used by the system. With the exception of SQ Rules and Register Rules, each type of algorithm is described in the following table.

Important! If you introduce new algorithm types, you must prefix the algorithm type code with CM. If you do not do this, there is a slight possibility that a future release of the application could introduce a new algorithm type with the name you allocated.

Refer to Setting Up Register Rules for descriptions of the register rules supplied with the system.

Refer to Setting Up SQ Rules for descriptions of the service quantity rules supplied with the system.

	Algorithm Type
	What it’s used for
	Parameter Information

	ADHV-DTD
	This algorithm is used to validate that an ad hoc characteristic value is a date.

The Parameters From Date and To Date are both optional. The algorithm will check that the date is later than the From Date (if entered) and/or earlier than the To Date (if entered). If either value is specified, they must be in the format YYYYMMDD.

The various Date Format parameters are used to control the format in which the date is entered by the user. You must supply at least one format in parameter 3. The other parameters exist in case you allow multiple date formats to be used. Examples of date formats include: DD/MM/YYYY, DD-MM-YYYY, MM/DD/YYYY, YYYY-MM-DD, etc.

Regardless of the format entered by the user, the date is stored in the format defined by parameter 3. We recommend this date be set to YYYYMMDD (to facilitate ad hoc queries).

Refer to Characteristic Type – Main for how algorithms of this type are used.
	Param 1 = From Date (optional)

Param 2 = To Date (optional)

Param 3 = Date Format

Param 4 = Date Format (optional)

Param 5 = Date Format (optional)

Param 6 = Date Format (optional)

	ADHV-NR
	This algorithm type is used to validate that an ad hoc characteristic value is a number in the range of Low value in range to High value in range.

Refer to Characteristic Type – Main for how algorithms of this type are used.
	Param 1 = Low value in range

Param 2 = High value in range

	ADHV-PHN
	This algorithm type validates that the phone number is in a required format. Up to 9 different Formats may be defined. At least one is required. Examples of phone formats include: (999)999-9999, 999/999-9999, (99)999-9999, etc.

Refer to Characteristic Type – Main for how algorithms of this type are used.
	Param 1 = Format 1

Param 2 = Format 2 (optional)

Param 3 = Format 3 (optional)

Param 4 = Format 4 (optional)

Param 5 = Format 5 (optional)

Param 6 = Format 6 (optional)

Param 7 = Format 7 (optional)

Param 8 = Format 8 (optional)

Param 9 = Format 9 (optional)

	ADHV-REQ
	This algorithm simply checks that something has been entered for an ad hoc characteristic value.

Refer to Characteristic Type – Main for how algorithms of this type are used.
	No parameters are used

	ADJT-AC
	THIS ALGORITHM IS ONLY USED IF YOU PRACTICE CASH ACCOUNTING.

There are several types of adjustments that behave just like payments (in respect of payables cash accounting). Consider the following events:

· Seizing a deposit (i.e., transferring a credit from a deposit service agreement to a regular service agreement)

· Overpayments transferred from one service agreement to another

The above events should cause the system to transfer holding amounts to true payable amounts (notice that the above examples are all transfer adjustments).

In addition, you would also specify this algorithm on adjustment types used to refund cash to a customer because the tax holding and payable balances must be affected accordingly.

This algorithm creates a financial transaction for adjustments where:

· Payoff amount = adjustment amount

· Current amount = adjustment amount

· The general ledger is affected

· Holding payable balances are relieved in proportion to the amount of receivables that are reduced.

You will also have to think carefully about whether to use this algorithm or ADJT-NM.

Refer to Adjustments That Behave Like Payments for more information about the types of adjustments on which this algorithm is referenced.

Refer to Adjustment Type for where algorithms of this type are plugged-in.
	No parameters are used

	ADJT-AD
	THIS ALGORITHM IS ONLY USED IF YOU PRACTICE CASH ACCOUNTING AND YOU WRITE DOWN SMALL AMOUNTS OF DEBT.

This algorithm should be plugged-in on the adjustment type that is used to write down small amounts of debt (or credit balances). It removes any outstanding payables holding balances and then reduces receivables accordingly. This adjustment type must be referenced on your write down algorithm that is referenced on Write Off Control – Main. Refer to Write Down Adjustment for a more detailed description of what this algorithm does.

Refer to Adjustment Type for where algorithms of this type are plugged-in.
	No parameters are used

	ADJT-CA
	This algorithm creates a financial transaction for adjustments where:

· Payoff amount = 0

· Current amount = adjustment amount

· The general ledger is not affected

This algorithm should be plugged-in on adjustment types that only affect a service agreement's current balance. These types of adjustments would only be issued against service agreements where current and payoff amounts differ (e.g., charitable contributions, payment arrangements, utility agreements on a budget).

Refer to Adjustment Type for where algorithms of this type are plugged-in.
	No parameters are used

	ADJT-GL
	THIS ALGORITHM IS ONLY USED IF YOU NEED TO CHANGE THE BALANCES IN YOUR GL WITHOUT AFFECTING A CUSTOMER’S BALANCE.

This algorithm creates a financial transaction for adjustments where:

· Payoff amount = 0

· Current amount = 0

· The general ledger is affected

This algorithm would be plugged-in on the adjustment type used to modify the underlying GL accounting without affecting either of the customer's balances (the payoff or current balance). Note that you would not normally modify an accounts receivable GL account, as that is typically associated with changes to the payoff amount.

Refer to Adjustment Type for how algorithms of this type are used.
	No parameters are used

	ADJT-NM
	This algorithm creates a financial transaction for adjustments where:

· Payoff amount = adjustment amount

· Current amount = adjustment amount

· The general ledger is affected

This algorithm should be plugged-in on all adjustment types that impact a service agreement’s current and payoff balances equally (i.e., it is used on almost all adjustment types).

IF YOU PRACTICE CASH ACCOUNTING, you will also have to think carefully about whether to use this algorithm or ADJT-AC. Refer to Adjustments That Behave Like Payments for more information.

Refer to Adjustment Type for where algorithms of this type are plugged-in.
	No parameters are used

	ADJT-RA
	THIS ALGORITHM IS ONLY USED IF YOU USE THE CONVERSION TOOL TO LOAD HISTORICAL BALANCES.

This algorithm creates a financial transaction for adjustments where:

· Payoff amount = adjustment amount

· Current amount = 0

· The general ledger is NOT affected

This algorithm would be plugged-in on the adjustment type used to change a customer’s payoff balance to reflect that balance in your legacy system without affecting the general ledger.

Refer to Adjustment Type for how algorithms of this type are used.
	No parameters are used

	ADJT-TA
	This algorithm creates a financial transaction for adjustments where:

· Payoff amount = adjustment amount

· Current amount = 0

· The general ledger is affected

This algorithm should be plugged-in on adjustment types that only affect a service agreement's payoff balance and the general ledger. These types of adjustments would only be issued against service agreements where current and payoff amounts differ (e.g., charitable contributions, payment arrangements, utility agreements on a budget).

IF YOU PRACTICE CASH ACCOUNTING, you will also have to think carefully about whether to use this algorithm or ADJT-TC. Refer to Adjustments That Behave Like Payments for more information.

Refer to Adjustment Type for where algorithms of this type are plugged-in.
	No parameters are used

	ADJT-TC
	THIS ALGORITHM IS ONLY USED IF YOU PRACTICE CASH ACCOUNTING.

This algorithm creates a financial transaction for adjustments where:

· Payoff amount = adjustment amount

· Current amount = 0

· The general ledger is affected

· Holding payable balances are relieved in proportion to the amount of receivables that are reduced.

You will also have to think carefully about whether to use this algorithm or ADJT-TA.

Refer to Adjustments That Behave Like Payments for more information about the types of adjustments on which this algorithm is referenced.

Refer to Adjustment Type for where algorithms of this type are plugged-in.
	No parameters are used

	AGYREF EQUAL
	This collection agency assignment algorithm returns the collection agency which currently has the least dollar amount of active referrals.

Refer to Setting Up Write Off Event Types (collection agency referrals) for how algorithms of this type are used.
	No parameters are used

	APAY-CREATE
	This automatic payment creation algorithm creates automatic payments records during bill completion and on schedule pay plan dates for accounts that pay automatically. These records control when and how automatic payments are interfaced to the financial institution and your general ledger.

Please be aware that this algorithm will call the autopay route type’s date calculation algorithm to calculate the payment’s date and the automatic payment’s extract date and GL posting date. See the APAY-DTCALC for more information about the date calculation algorithm.

The parameters are only used if you practice open-item accounting AND the account associated with the automatic payment is an open-item account (i.e., its customer class indicates open-item accounting is performed). The following explains each parameter:

- Open-Item Account Match Type Code To Be Used For Bills references the match type code that controls how the match event is created that matches the automatic payment’s financial transaction’s against the bill’s financial transactions. This match type should reference a payment distribution algorithm that distributes the payment based on the bill ID. Refer to When Are Match Events Created for more information.

- Open-Item Account Match Type Code To Be Used For Pay Plan Payments references the match type code that controls how the match event is created that matches the automatic payment’s financial transaction’s against the bill’s financial transactions. This match type code should NOT reference an override payment distribution algorithm (so that the customer class’s default algorithm will be used). Why? Because pay plan automatic payments typically cannot be matched to open-items. Refer to Pay Plans for more information.

Refer toInstallation Options - Algorithms for how algorithms of this type are used.
	Param 1 = Open-Item Account Match Type Code To Be Used For Bills

Param 2 = Open-Item Account Match Type Code To Be Used For Pay Plan Payments

	APAY-DTCALC
	This automatic payment date calculation algorithm calculates the following dates:

- Autopay Extract Date

- Autopay GL Distribution Date

- Payment Date

If the automatic payment is created as part of bill completion:

- If Extract Date Basis is Bill Date, Autopay Extract Date = Bill Date + Bill Autopay Days Till Extract
- If Extract Date Basis is Bill Due Date, Autopay Extract Date = Bill Due Date - Bill Autopay Days Till Extract

If the automatic payment created as part of pay plan automatic payment generation, Autopay Extract Date = Scheduled Payment Date - Non-Bill Autopay Days Till Extract
Autopay GL Distribution Date = Auto Extract Date + Days Till GL Posting

If Payment Date Basis is Extract Date, Payment Date = Scheduled Extract Date

If Payment Date Basis is Distribution Date, Payment Date = Scheduled Distribution Date

Note: Bill Autopay Days Till Extract, Non-Bill Autopay Days Till Extract and Days Till GL Posting may be added/subtracted as either work days or calendar days as per the respective values of Bill Autopay Days Till Extract Type, Days Till GL Posting Type, and Non-Bill Autopay Days Till Extract Type.

Refer to Autopay Route Types for how algorithms of this type are used.
	Param 1 = Extract Date Basis (B – Bill Date, D – Bill Due Date)

Param 2 = Bill Autopay Days Till Extract (in number of days)

Param 3 = Bill Autopay Days Till Extract Type (D - Calendar Days, W - Work Days)

Param 4 = Days Till GL Posting (in number of days)

Param 5 = Days Till GL Posting Type (D - Calendar Days, W - Work Days)

Param 6 = Payment Date Basis (E - Extract Date, D - Distribution Date)

Param 7 = Non-Bill Autopay Days Till Extract (in number of days)

Param 8 = Non-Bill Autopay Days Till Extract Type (D - Calendar Days, W - Work Days)

	BCMP-ESTBSM
	This bill segment completion algorithm attaches a bill segment Bill Message Code to a bill segment that used an estimated read.

Refer to SA Type - Algorithms for how algorithms of this type are used.
	Param 1 = Bill Message Code

	BILPC-SPRC
	THIS ALGORITHM SHOULD ONLY BE USED IF YOU HAVE “THEY BILL FOR US” SERVICE PROVIDERS AND YOU CALCULATE LATE PAYMENT CHARGES ON THEIR DEBT IN A VERY SPECIFIC FASHION!

This algorithm should be viewed as a sophisticated example of how to calculate late payment charges associated with the debt associated with “they bill for us” (TBFU) service providers. TBFU service providers are organizations that provide billing services for your company. You still calculate your own charges, but you transfer them to the service provider and the service provider sends them to the customer. This means that your customers don’t owe you money. Rather, the service provider who bills the customer owes you money.

This algorithm calculates late payment charges on the debt associated with the TBFU service provider. It will only work if payments remitted by the service provider have a separate tender for each customer for which they are remitting payment. These tenders must reference the customer’s SA ID in the column NAME1.

The late payment charge amount is calculated by:

· multiplying the Bill Factor (Late Payment) by

· the total transferred to the service provider (this is accumulated by retrieving all transfer adjustments associated with the service provider’s SA that are marked with the XFER Adjustment Type)

The system levies the late payment charge against the Service Provider’s LPC SA (identified by SA Type) by creating an adjustment (the adjustment type is defined using LPC Adjustment Type).

Refer to SA Type – Main for how algorithms of this type are used.
	Param 1 = Bill Factor (Late Payment)

Param 2 = XFER Adjustment Type

Param 3 = LPC Adjustment Type

Param 4 = SA Type of the Service Provider's LPC SA

	BILPC-TOTAL
	This algorithm type is used to calculate the late payment charge amount for a specific service agreement linked to an account.

The late payment charge amount is calculated by multiplying the current amount due on the late payment charge cutoff date minus all recent credits by the LPC Percentage (defined using Bill Factor Code). It’s important to note that LPC percentage changes are not prorated.

The system levies the late payment charge against the service agreement by creating an adjustment (the adjustment type is defined using Adjustment Type).

Refer to How Late Payment Charges Get Calculated for more information about late payment charges in general.

Refer to SA Type – Main for how algorithms of this type are used.
	Param 1 = Adjustment Type

Param 2 = Bill Factor Code

	BILPE-ALL
	This algorithm type is used during the late payment charge background process to determine if an account is eligible for late payment charges.

This algorithm determines if an account is eligible for late payment charge assessment by comparing the account’s current amount against a Threshold Amount. If the current amount is greater than the threshold amount, the account’s service agreements will be levied a late payment charge using the respective late payment charge algorithm defined on each SA’s SA type.

Refer to Setting Up Customer Classes for how algorithms of this type are plugged in.
	Param 1 = Threshold Amount

	BROKEN PP
	This broken pay plan algorithm inserts a credit rating history record for an account when a pay plan is broken.

Credit Rating Points contains the number of credit rating points that should be affected by such an event. This may be a positive or negative number (depending on how you set up your credit ratings).

Credit Rating Points contains the number of cash-only points that should be affected by such an event. This may be a positive or negative number (depending on how you set up your cash-only thresholds).

Credit Rating Duration defines the number of days the customer’s credit rating / cash-only score is impacted.

Refer to Account – C&C for more information about credit rating and cash-only score.

Refer to Pay Plan Types for where algorithms of this type are used.
	Param 1 = Credit Rating Points

Param 2 = Cash Only Points

Param 3 = Credit Rating Duration

	BSAXERLIM
	This bill segment automatic cancellation algorithm is typically used to cancel historical, estimated bill segments when a “real” read is used on the current bill.

It works as follows:

· If the system creates a bill segment with a read whose read type is greater than or equal to the Minimum Good Read Type, it will cancel previous bill segments that contain system-estimated meter reads until it detects a bill segment with a reading that is less than the reading on the current bill segment.

· You can limit the maximum number of bills that are automatically cancelled by specifying the Maximum Days to Auto-Cancel.

Refer to Setting Up Bill Segment Types for how algorithms of this type are used.
	Param 1 = Minimum Good Read Type (this is the numeric code associated with the value of the lowest priority read type that you consider to be a “good” read)

Param 2 = Maximum Days to Auto-Cancel

	BSBF-B0
	This bill segment financial transaction algorithm creates a financial transaction for a bill segment where:

· Payoff amount = 0

· Current amount = bill amount

· The general ledger is not affected

This algorithm should be plugged-in on all bill segment types that only affect a service agreement’s current balance (e.g., charitable contributions, deposits).

Refer to Setting Up Bill Segment Types for how algorithms of this type are used.
	No parameters are used

	BSBF-BA
	This bill segment financial transaction algorithm creates a financial transaction for a bill segment where:

· Payoff amount = bill amount

· Current amount = bill amount / recurring charge amount (see below for which value is used)

· The general ledger is affected (distribution codes are taken from the bill lines (typically these GL accounts are credited) and the SA type (typically this GL account is debited)

Note – current amount will equal bill amount unless the service agreement’s recurring charge amount is populated. A good example of when this is used are service agreements that are part of a budget plan. For these types of service agreements, the payoff amount is the actual bill amount, the current amount is the budget amount (specified in the SA’s recurring charge). If the recurring charge amount is zero, the current amount will be the bill amount.

This algorithm should be plugged-in on all utility and billable charge service agreements.

Refer to Setting Up Bill Segment Types for how algorithms of this type are used.
	No parameters are used

	BSBF-CU
	This bill segment financial transaction algorithm creates a financial transaction for a bill segment where:

· Payoff amount = 0

· Current amount = 0

· The general ledger is affected (distribution codes are taken from the bill lines (typically these GL accounts are credited) and the SA type (typically this GL account is debited)

This algorithm should be plugged-in on company-usage service agreements.

Note, while this algorithm affects neither current nor payoff amount, it does cause a journal entry to be generated so that company usage is booked to your general ledger.

Refer to Setting Up Bill Segment Types for how algorithms of this type are used.
	No parameters are used

	BSBS-BC
	This bill segment creation algorithm creates a bill segment for each non-billed billable charge linked to the service agreement being billed. This option would typically be used for one-time invoice service agreements or pass-through charges from a 3rd party.

If the service agreement has a rate, this algorithm will call rate application after it has loaded the billable charge lines and their service quantities onto the bill segment. This will result in one or more additional bill calculation headers added to the bill segment (multiple could be added if the rate changed during the bill charge’s bill period).

This algorithm provides two options:

· Must Find Billable Charge. If set to Y, a bill segment error will be created if no billable charges are linked to the SA being billed. If this is set to N, the SA will be skipped if there are not billable charges.

· Wait For The Last Day Of The Bill Cycle controls if batch billing should not attempt to create a bill segment until the last day of the batch billing window. This option is useful for billable charges that have been uploaded from third parties (i.e., pass through billing) and you want to give the 3rd party until the last night of the bill cycle to interface their pass through charges to you. If set to Y, a bill segment exception is created if it is not the last day of the bill cycle window (meaning that the bill segment will only produced on the last night of the bill window). Only on the last day does the system look for billable charges on the service agreement. Otherwise, this algorithm tries to create a bill segment regardless of the day in the bill cycle window.

This option would typically be used for:

- One time charges (you should create a billable charge when a one-time charge occurs and then create a bill for the related service agreement’s account). Refer to Billable Charge - Main for more information.

- Sub service agreement used to bill pass through charges calculated by the service provider. Refer to The Bill Ready Calculation Method for more information.

Refer to Setting Up Bill Segment Types for how algorithms of this type are used.
	Must Find Billable Charge to Bill (Y/N)

Wait for the Last Day of the Bill Cycle Window (Y/N)

	BSBS-RA
	This bill segment creation algorithm creates a bill segment using the service agreement’s Recurring Charge Amount (or the remaining amount) and the Description On Bill from the service agreement’s SA Type. The system automatically stops the service agreement when the Payoff Amount falls to zero.

This option would typically be used for a variety of non-metered services that are billed a given amount (i.e., the recurring charge amount) until there is no longer an outstanding amount on the service agreement. Examples include: payment arrangements, merchandise sales billed in installments, zero-interest loans.

Refer to Setting Up Bill Segment Types for how algorithms of this type are used.
	No parameters are used

	BSBS-RB
	This bill segment creation algorithm creates a bill segment using the service agreement’s Recurring Charge Amount (or the remaining amount) and the Description On Bill from the service agreement’s SA Type. The system automatically stops billing when the system has billed the Total Amount To Bill.

This option would typically be used for deposit service agreements.

Refer to Setting Up Bill Segment Types for how algorithms of this type are used.
	No parameters are used

	BSBS-RR
	This bill segment creation algorithm creates a bill segment using the service agreement’s Recurring Charge Amount and the Description On Bill from the service agreement’s SA Type.

This option would typically be used for a variety of non-metered services that are billed a given amount. Examples include: charitable contribution bills, land leases.

Refer to Setting Up Bill Segment Types for how algorithms of this type are used.
	No parameters are used

	BSBS-RT
	This bill segment creation algorithm creates a bill segment using the service agreement’s rate

This option would typically be used for metered services and ratable non-metered services.

Warning! If you use rates to calculate taxes on billable charges, you should NOT use this algorithm. Rather, use BSBS-BC (the billable charge algorithm) and make sure to specify a rate on the related service agreements that contains rate components that calculate the taxes appropriately.

Refer to Setting Up Bill Segment Types for how algorithms of this type are used.
	No parameters are used

	BSGC-MS
	THIS ALGORITHM SHOULD ONLY BE SPECIFIED ON BILL SEGMENT TYPES THAT ARE SPECIFIED ON SA TYPES ASSOCIATED WITH SUB SERVICE AGREEMENTS.

This bill segment get consumption algorithm simply copies the read and item details from the master SA’s bill segment. This is done because ratable sub SA’s are always billed together with their Master SA. This is done so that the exact consumption that is used to calculate the master SA’s charges is also used to calculate the sub SA’s charges.

Refer to The Rate Ready Calculation Method for how algorithms of this type are used.

Refer to Setting Up Bill Segment Types for where algorithms of this type are plugged-in.
	No parameters are used

	BSGC-SP
	This algorithm is used to get consumption from the SPs linked to the SA. Use this algorithm for SAs that need meter reads / item details in order to calculate the charges.

To determine consumption from meters, meter reads are retrieved from the Meter Configurations installed at the SA’s SP’s during the bill period. The meter reads retrieved are stored in the bill segment’s read details.

Items installed at the SA’s SP’s during the period are also retrieved. The items retrieved are stored in the bill segment’s item details.

The parameters function as follows:

· Maximum Consecutive Estimated Bill Segments specifies the maximum number of consecutive system-estimated bill segments that are allowed. If the bill segment being calculated requires an estimated read and the last X (where X is the value of this parameter) bill segments have been estimated, a bill segment error will be created.

· Estimate when ‘No Read’ registered controls whether or not an estimate should be created if a meter read is found that is marked as “no read”. If this is Y, the algorithm will immediately attempt to estimate regardless of the day in the bill cycle window if 1) there is no usable read and 2) a ‘No Read’ register read was found. The idea is that if a meter reader actually went out there and logged that he can't read the meter, then we don't have to wait until the Estimate Date on the Bill Cycle Schedule.

Refer to Setting Up Bill Segment Types for how algorithms of this type are used.
	Param 1 = Maximum consecutive times estimate Bill Segment

Param 2 = Estimate when No Read recorded (Y/N)

	BUDCALC-BH
	This algorithm calculates a recommended budget amount using the following steps:

1) sum the actual bill payoff amount over the last X months (X is defined in Billing History Period),

2) add to this the service agreement(s) payoff balance(s),

3) subtract from this the service agreement(s) current balance(s),

4) multiply this by the Budget Adjustment Percentage,

5) round up the budget to the nearest whole value as defined by Round Up Unit.

Please note that this algorithm uses the service agreement’s premise billing history to derive the recommend budget amount. In other words, the system uses the bill segments associated with the premise and SA type regardless of the customer.

The system will not be able to produce a recommended budget amount if an adequate number of historical bills do not exist (as defined in Minimum Bill History).

Refer to Budget Plan – Main for how algorithms of this type are used.
	Param 1 = Budget Adjustment Percentage (0 to 999%)

Param 2 = Billing History Period (in months)

Param 3 = Minimum Bill History (in months)

Param 4 = Round Up Unit (integer)

	BUDCALC-PH
	The recommended budget amount is calculated using the following steps:

1) sum the actual bill amount over the last Billing History Period months,

2) add to this sum the current value of the service agreement’s payoff balance,

3) if Subtract Current Balance is Y, subtract from this the customer’s current balance,

4) multiply the sum by the Budget Adjustment Percentage,

5) round up the budget to the nearest whole value as defined by Round Up Unit.

Please note that this algorithm uses the service agreement’s premise billing history to derive the recommend budget amount. In other words, the system uses the bill segments associated with the premise and SA type regardless of the customer.

If an adequate number of historical bills do not exist (as defined in Minimum Bill History), the system estimates missing bill segments as follows:

- Consumption is estimated for each missing bill period (using your consumption estimation plug-in)

- The service agreement's rate is applied to the estimated consumption

Refer to Budget Plan – Calculation Algorithm for how algorithms of this type are used.
	Param 1 = Budget Adjustment Percentage (0-999%)

Param 2 = Billing History Period (Months)

Param 3 = Minimum Bill History (Months)

Param 4 = Subtract Current Balance (Y/N)

Param 5 = Round-Up Unit (Interger Number)

	BUDMON-TOL
	This budget monitoring algorithm will highlight an account’s budget amount as being out-of-sync if it is more than X percent different from the current recommended budget amount.

This algorithm works as follows: 1) determine the customer’s existing budget amount, 2) determine the recommended budget amount, 3) if the recommended is greater than the existing, highlight the account if the difference between the existing and recommended is greater than High Limit Percentage Tolerance, 4) if the recommended is less than the existing, highlight the account if the difference between the existing and recommended is greater than Low Limit Percentage Tolerance.

Refer to Budget Plan – Monitor Algorithm for how algorithms of this type are used.
	Param 1 = Low Limit Percentage Tolerance (0 to 999%)

Param 2 = High Limit Percentage Tolerance (0 to 999%)

	BUDTUP-WTOL
	This budget true-up algorithm will change a customer’s budget amount if the recommended budget amount is more than X percent different from the customer’s current budget amount (X is defined in Tolerance Percentage).

Refer to Budget Plan – True Up Algorithm for how algorithms of this type are used.
	Param 1 = Tolerance Percentage (0 to 999%)

	CC BY TYPCL
	This control central alert algorithm counts the number of Customer Contacts for a given Contact Type and Contact Class, whose create date is within the last X days (X being the Number of Days Cutoff) and displays an appropriate alert on control central.

The two navigation key parameters are used to tell the system where to drill to if a user clicks on the alert in control central. Navigation Key defines the name of the transaction. Navigation Key Field Name defines the field whose value is passed to the transaction. For example, if you want the user to be taken to the pay plan maintenance transaction, this transaction’s navigation key is customerContactMaint and its navigation key field name is PER_ID. The easiest way to find a transaction’s navigation key is to go to Business Process - Main and use the search facilities on navigation key. This query will also show you the field name that must be specified.

Warning! This algorithm can only be used to drill to a transaction that has a single field passed to it.

Refer to control central alerts in Installation Options - Algorithms for how algorithms of this type are used.
	Param 1 = Number of Days Cutoff

Param 2 = Customer Contact Type

Param 3 = Customer Contact Class

Param 4 = Navigation Key

Param 5 = Navigation Key Field Name

	CC-NBR-VALID
	This auto-pay account number validation algorithm is used to validate that an automatic payment account number is entered in a proper credit card format.

Refer to Setting Up Auto Pay Source Codes for how algorithms of this type are used.
	No parameters are used

	CIGEOTY-LL
	This algorithm type is used to validate that a geographic type specified on a premise or service point is entered in the format 99.9999999 999.9999999 (i.e., latitude / longitude).

Refer to Setting Up Geographic Types for how algorithms of this type are used.
	No parameters are used

	CIGEOTY-TR
	This algorithm type is used to validate that a geographic type specified on a premise or service point is entered in the format 99A 99A 99 9 (i.e., township / range / section / quarter).

Refer to Setting Up Geographic Types for how algorithms of this type are used.
	No parameters are used

	CIPERID-EIN
	This algorithm type is used to validate that a person ID specified on a person or control central is entered in a given format (the format is defined as a parameter of the algorithm).

This algorithm actually has two purposes:

- It can format contiguous numbers into a format consistent with local customs (so that users do not have to enter dashes / spaces / etc.)

- It validates that a person ID number is in a given format (defined in Valid Format).

While the ID of this algorithm type suggests that it is used only to validate that a person ID is in the American employer ID number (EIN) format, it can actually be used to validate a person ID is in whatever format is defined in Valid Format. For example, if your customers are in North America, and you wanted to capture a social security number, you would create an algorithm with a Valid Format of 999-99-9999.

Note that the format will be used as the storage format for the identity number.

Refer to Setting Up Identifier Types for how algorithms of this type are used.
	Param 1 = Valid format

	CIPERID-SSN
	This algorithm type is used to validate that a person ID specified on a person or control central is entered in a given format (the format is defined as a parameter of the algorithm).

This algorithm actually has two purposes:

- It can format contiguous numbers into a format consistent with local customs (so that users do not have to enter dashes / spaces / etc.)

- It validates that a person ID number is in a given format (defined in Valid Format).

While the ID of this algorithm type suggests that it is used only to validate that a person ID is in the American social security number (SSN) format, it can actually be used to validate a person ID is in whatever format is defined in Valid Format. For example, if your customers are in North America, and you wanted to capture a social security number, you would create an algorithm with a Valid Format of 999-99-9999.

Note that the format will be used as the storage format for the identity number.

Refer to Setting Up Identifier Types for how algorithms of this type are used.
	Param 1 = Valid format

	CNCL FT MEVT
	THIS ALGORITHM IS ONLY USED IF YOU PRACTICE OPEN-ITEM ACCOUNTING AND THE ACCOUNT’S CUSTOMER CLASS INDICATES OPEN-ITEM ACCOUNTING IS PRACTICED.

This FT freeze algorithm creates a new match event when an FT is cancelled. This match event contains the original FT and its cancellation FT.

If the FT being cancelled is already linked to a match event, that match event will be canceled (thereby releasing all the other FT's of that match event) and marked with the supplied Match Event Cancel Reason Code. In addition, a message will be appended to the comments of the canceled match event using the Message Category and Message Number. The appended message text can contain substitution parameters of FT ID (by specifying %1 in the message text) and SA ID (by specifying %2 in the message text). For example, the message could be This match event was automatically canceled because FT %1 of SA %2 was canceled.

Refer to How Are Match Events Cancelled for more information.

Refer to Customer Class – Algorithm for how algorithms of this type are used.
	Param 1 = Match Event Cancel Reason Code

Param 2 = Message Category

Param 3 = Message Number

	COLL CAN PP
	This collection event algorithm cancels any active payment plans associated with the collection process's debt class. The Cancel Third Party parameter dictates whether or not pay plans that are payable by third parties should also be canceled.

Refer to Setting Up Collection Event for how algorithms of this type are used.
	Param 1 = Cancel Third Party

	COLL CC CPSA
	This collection process cancellation algorithm determines if a service agreement on an active collection process has debt as at the arrears date of its collection process that is less than or equal to the Cancellation Threshold Amount (if so, the collection process monitor will remove it from the collection process).

Refer to The Collection Process Monitor Can Cancel A Collection Process for how this algorithm is called.

Refer to Setting Up Collection Process Templates for how algorithms of this type are used.
	Param 1 = Cancellation Threshold Amount

	COLL COND AS
	This collection condition algorithm determines if an account's SAs (linked to a given debt class) have We Bill For Them service providers. If so, it returns a value of true to the account debt monitor (and it then will start a collection process that is appropriate to this situation if the account / debt class violates your collection criteria).

This algorithm would be useful if you have different types of collection processes when an account has 3rd party debt commingled with your own debt.

Refer to Setting Up Collection Class Controls for how algorithms of this type are used.
	No parameters are used

	COLL COND BG
	This collection condition algorithm determines if the account is on a budget. If so, it returns a value of true to the account debt monitor (and it then will start a collection process that is appropriate to this situation if the account / debt class violates your collection criteria).

This algorithm would be useful if you have different types of collection processes when an account is on a budget.

Refer to Setting Up Collection Class Controls for how algorithms of this type are used.
	No parameters are used

	COLL COND CS
	This collection condition algorithm compares an account’s credit rating against the threshold credit rating defined on the installation record. If the account’s credit rating is less than the threshold, this algorithm returns True to the account debt monitor (and it then will start a collection process that is appropriate to this situation if the account / debt class violates your collection criteria).

This algorithm would be useful if you have different types of collection processes when an account has a poor credit rating.

Refer to Setting Up Collection Class Controls for how algorithms of this type are used.
	No parameters are used

	COLL COND DF
	This is the default condition algorithm that should be your lowest priority condition on your collection class controls.

This is a very simple algorithm that simply returns a value of True to the account debt monitor (and it then will start a collection process that is appropriate to this situation (i.e., when the account is not subject to any higher priority conditions)).

Refer to Setting Up Collection Class Controls for how algorithms of this type are used.
	No parameters are used

	COLL COND DS
	This collection condition algorithm determines whether an active severance process exists for any of the SAs associated with the account and debt class being analyzed by the Account Debt Monitor. If so, it returns True to the account debt monitor (and, if you’ve set up the related collection criteria appropriately, no collection process will be started).

It is used to force the Account Debt Monitor to ignore all SAs in a debt class when one of the SA's in the debt class has already been nominated to be severed.

Refer to How To Nominate A Single Service To Sever (Rather Than Sever Everything That’s In Arrears) for more information about this algorithm.

Refer to Setting Up Collection Class Controls for how algorithms of this type are used.
	No parameters are used

	COLL COND PA
	This collection condition algorithm checks if the account has a broken payment arrangement within the last X days (where X is defined in Number of days since PA was broken). If the account’s credit rating is less than the threshold, this algorithm returns True to the account debt monitor (and it then will start a collection process that is appropriate to this situation if the account / debt class violates your collection criteria).

Characteristic type and value define the SA characteristic that is used to indicate that a pay arrangement has been broken.

Refer to Setting Up Collection Class Controls for how algorithms of this type are used.
	Param 1 = Number of days since PA was broken

Param 2 = Characteristic type

Param 3 = Characteristic value

	COLL EVT GEN
	This collection event algorithm is a "dummy" algorithm that should be used as a sample when you need to create your own ad hoc collection event functions.

Refer to Setting Up Collection Event for how algorithms of this type are used.
	No parameters are used

	COLL EVT SEV
	This collection event algorithm identifies a SA to sever and creates a severance process for the respective SA.

The parameters of this algorithm define how the system selects the service agreement to sever if multiple service agreements are associated with the collection process’s debt class. The Service Type of Primary Service to Sever defines the service type of the preferred service to sever. If the customer doesn’t have a service agreement of this type, the Service Type of Secondary Service to Sever defines the service type of the next type of service to sever.

Refer to How To Nominate A Single Service To Sever (Rather Than Sever Everything That’s In Arrears) for more information about this algorithm.

Refer to Setting Up Collection Event for how algorithms of this type are used.
	Param 1 = Service Type of Primary Service to Sever

Param 2 = Service Type of Secondary Service to Sever

	CREDIT-XFER
	This bill segment completion algorithm will transfer the balance of a credit SA to other SAs linked to the account. First, it will ensure that the current and payoff balances of the SA are equal. If not, it will create an Adjustment to sync them using the Sync Up Adjustment Type. It will then relieve the credit amount on the SA using the Transfer Adjustment Type to transfer to other SAs.

Refer to Overpayment for more information about how this algorithm is used.

Refer to SA Type – Algorithm (Bill Completion Algorithm) for how algorithms of this type are used.
	Param 1 = Sync Up Adjustment Type

Param 2 = Transfer Adjustment Type

	DC COLL CAN
	This collection process cancellation algorithm determines if a debt class has an active collection process, checks its debt, and cancels the process if warranted.

To determine if a debt class’s debt warrants collection process cancellation, the arrears balances of all SAs in the debt class (including those already in severance) are summed. This value is reduced in accordance with the pay plan override arrears algorithm (plugged-in on debt class), and then compared to the Debt Class Cancellation Threshold. The adjusted arrears amount must be less than the cancellation threshold before the collection process can be canceled.

Note that the arrears balances are summed as of the collection process’s arrears date.

Refer to How To Nominate A Single Service To Sever (Rather Than Sever Everything That’s In Arrears) for more information about this algorithm.

Refer to Setting Up Debt Classes for how algorithms of this type are used.
	Param 1 = Debt Class Cancellation Threshold (monetary amount)

	DC SEV CAN
	This severance process cancellation algorithm determines if a debt class has any severance processes, checks their debt, and cancels the processes if warranted.

To determine if cancellation can take place, the arrears balances of all the SAs in the debt class (including those already on severance) are summed. This value is reduced in accordance with the pay plan override arrears algorithm (plugged in on the debt class), and then compared to the Debt Class Cancellation Threshold. The adjusted arrears amount must be less than the cancellation threshold before all the severance processes in this debt class, that can be auto canceled, are canceled.

Note that the arrears balance is calculated as of the most recent bill's due date, that is earlier than the business process date + grace days

Refer to How To Nominate A Single Service To Sever (Rather Than Sever Everything That’s In Arrears) for more information about this algorithm.

Refer to Setting Up Debt Classes for how algorithms of this type are used.
	Param 1 = Debt Class Cancellation Threshold (monetary amount)

	DEL BSEG
	This bill pre-completion algorithm deletes bill segments that are in Error if: 1) the bill is not in Error, 2) the bill is being completed in batch, and 3) at least one other frozen bill segment exists that is not in Error.

When a bill segment is deleted, this algorithm also creates a ToDo entry (using the ToDo Type and ToDo Role (if specified)) and adds a Bill Message to the bill.

Refer to SA Type – Algorithm (Bill Pre Completion Algorithm) for how algorithms of this type are used.
	Param 1 = ToDo Type

Param 2 = ToDo Role (optional)

Param 3 = Bill Message Code

	DEP PIF MSG
	This is an FT Freeze algorithm for Deposit SAs.

Each time an FT is frozen, the payoff balance for the SA is checked. If it is equal to (Total to Bill Amount * (-1)), this means that the deposit amount requested has been paid in full. A Bill Message Code is printed on the next bill to acknowledge this fact to the customer (this is accomplished by adding a temporary bill message to the account linked to the SA). The amount of the deposit is inserted in the text of the message.

Refer to SA Type – Algorithm (FT Freeze Algorithm) for how algorithms of this type are used.
	Param 1 = Bill Message Code

	DEPBAD
	This algorithm is used for customers who are never considered “good” customers with respect to determining whether to refund a deposit. The algorithm simply indicates good customer is “false”.

Refer to Deposit Class – Good Customer for how algorithms of this type are used.
	No parameters are used

	DEPGOOD-CR
	This algorithm will indicate a customer is good if the customer’s credit rating is greater than the credit rating threshold defined on the installation record.

Refer to Deposit Class – Good Customer for how algorithms of this type are used.
	No parameters are used

	DEPRECOM-BA
	This deposit recommendation algorithm calculates a deposit amount using the following steps:

1) determine the average bill amount over the last X months (X is defined in Billing History Period),

2) multiply the average bill amount by Y (Y is defined in Deposit Multiplier).

The average bill amount will be calculated using the deposit SA’s characteristic premise’s billing history. If the account does not use premise-oriented service agreements, the account’s billing history will be used instead (i.e., the recommended amount is calculated regardless of premise).

The system will not be able to produce a recommended deposit amount if an adequate number of historical bills do not exist (as defined in Minimum Bill History).

Refer to Deposit Class – Recommendation for how algorithms of this type are used.
	Param 1 = Deposit Multiplier (0 to 999%)

Param 2 = Billing History Period (in months)

Param 3 = Minimum Bill History (in months)

	DEPRECOM-GSP
	THIS ALGORITHM SHOULD ONLY BE USED IF YOU HAVE GAS SERVICE PROVIDERS AND YOU CALCULATE THEIR RECOMMENDED DEPOSIT IN A VERY SPECIFIC FASHION!

This deposit recommendation algorithm calculates a deposit amount using the following steps:

Determine deposit amount associated with customers who PROCURE their gas from the service provider:

· Retrieve the daily therm usage (identified by UOM / TOU / SQI of Therms on the bill segments) over the last X months (X is defined in Billing History Period) for customers who procure their gas from the service provider (retrieve master SA’s linked to the service provider with a SA Relationship Type For Procurement). If an adequate number of historical bills do not exist, the system will estimate consumption for the Account's SA's SPs (using the Register Rule Code to convert CCF to Therms).

· Deposit amount is computed as: Number of Days in Deposit Period for Procurement * Daily Therm Usage * Bill Factor for Procurement * Deposit Multiplier.

Determine deposit amount associated with customers who TRANSPORT their gas using the service provider by the same algorithm described above. The only difference being that the following transport-oriented parameters are used: SA Relationship Type for Transportation, Number of Days in Deposit Period for Transportation, Bill Factor for Transportation.

Determine the deposit associated with the service provider’s storage requirements:

· Retrieve the provider's SA (where the SA has SA Characteristic Type for Storage = 'Y').

· Deposit amount is computed as Number of Days in Deposit Period for Storage * Accepted Annual Storage (contract qty) / 365 * Bill Factor for Storage

If the recommended deposit amount is not within the Threshold Review Percentage of the current deposit amount, a ToDo entry will be created (using ToDo Type and Role).

Refer to Deposit Class – Recommendation for how algorithms of this type are used.
	Param 1 = Bill History Period (Months)

Param 2 = Deposit Multiplier (0-999%)

Param 3 = Threshold Review Percentage (0-100%)

Param 4 = To Do Type

Param 5 = Role (optional)

Param 6 = UOM of Therms

Param 7 = TOU of Therms

Param 8 = SQI of Therms

Param 9 = Register Rule Code to convert CCF to Therms

Param 10 = SA Relationship Type for Procurement

Param 11 = Number of Days in Deposit Period for Procurement

Param 12 = Bill Factor for Procurement (Core Weighted Average Gas Cost)

Param 13 = SA Relationship Type for Transportation

Param 14 = Number of Days in Deposit Period for Transportation

Param 15 = Bill Factor for Transportation (Average Core Transport Rate)

Param 16 = SA Characteristic Type for Storage

Param 17 = Number of Days in Deposit Period for Storage

Param 18 = Bill Factor for Storage (Storage Rate/Therm)

Param 19 = Contract Quantity Type Storage (Accepted Annual Storage)

	DEPRECOM-MBA
	This deposit recommendation algorithm calculates a deposit amount using the following steps:

1) Determine the maximum bill amount over the last X months (X is defined in Billing History Period). If an adequate number of historical bills do not exist, the system estimates missing bill segments as follows:

· Consumption is estimated for the bill period (using your consumption estimation plug-in)

· The service agreement's rate is applied to the estimated consumption

2) Multiply the maximum bill amount by the Deposit Multiplier to get the recommended deposit amount.

Refer to Deposit Class – Recommendation for how algorithms of this type are used.
	Param 1 = Bill History Period (Months)

Param 2 = Deposit Multiplier (0-999%)

	DEPRECOM-MBT
	This deposit recommendation algorithm calculates a deposit amount using the following steps:

1) Determine the maximum bill amount over the last X months (X is defined in Billing History Period). If an adequate number of historical bills do not exist, the system estimates missing bill segments as follows:

· Consumption is estimated for the bill period (using your consumption estimation plug-in)

· The service agreement's rate is applied to the estimated consumption

2) Multiply the maximum bill amount by the Deposit Multiplier to get the recommended deposit amount.

If the recommended deposit amount is within the Threshold Review Percentage (Parameter 3) of the current deposit amount, a To Do entry will be created (using the ToDo Type and Role).

Refer to Deposit Class – Recommendation for how algorithms of this type are used.
	Param 1 = Bill History Period (Months)

Param 2 = Deposit Multiplier (0-999%)

Param 3 = Threshold Review Percentage (0-100%)

Param 4 = To Do Type

Param 5 = To Do Role (optional)

	DEPREFINT-AC
	This deposit interest calculation algorithm calculates interest as follows:

· The average daily balance credit balance on the deposit service agreement is multiplied by the Interest Rate (defined using Bill Factor Code). It’s important to note that interest rate changes are not prorated.

· The system applies interest to the deposit service agreement by levying an adjustment (the adjustment type is defined using Adjustment Type).

Refer to Deposit Class – Refund Interest for how algorithms of this type are used.
	Param 1 = Adjustment Type

Param 2 = Bill Factor Code

	DEPREFMETH-D
	This deposit refund method algorithm refunds a deposit to a customer as follows:

· First, the deposit SA’s current balance will be set equal to its payoff balance (the adjustment type is defined using Sync Adjustment Type).

· Next, the system distributes the deposit amongst the outstanding debt associated with service agreements in this deposit class. Debt is distributed amongst these service agreements in accordance with the standard payment distribution algorithm (refer to Distributing A Payment Amongst An Account’s Service Agreements). The adjustment type of the adjustment used to transfer the deposit is defined using Transfer Adjustment Type.

If any money remains, it is be refunded to the customer via a check. The creation of the A/P adjustment takes place as part of the write-off process; it does NOT take place at the time the outstanding debt is relieved.

Refer to Deposit Class – Refund Method for how algorithms of this type are used.
	Param 1 = Sync Adjustment Type

Param 2 = Transfer Adjustment Type

	DEPREFMETH-W
	This deposit refund method algorithm doesn’t actually refund the deposit. Rather, it creates a To Do entry to tell a user that the deposit should be refunded (the ToDo Type and Role are used to create the ToDo entry).

It will be up to the recipient of the ToDo entry to refund the deposit (by changing the deposit SA’s status to Pending Stop).

Refer to Deposit Class – Refund Method for how algorithms of this type are used.
	Param 1 = To Do Type

Param 2 = To Do Role (optional)

	DEPREFUND-GC
	This deposit refund criteria algorithm will indicate that it is OK to refund the deposit when the account meets the definition of a good customer (see the Good Customer Algorithm on the deposit class page), and the deposit has been held for X months (X is defined in Deposit Age in Months).

Refer to Deposit Class – Refund Criteria for how algorithms of this type are used.
	Param 1 = Deposit Age in Months

	DEPREFUND-NO
	This deposit refund criteria algorithm is used when no deposit refund is automatically created. The algorithm basically returns an indication to not refund the deposit.

Refer to Deposit Class – Refund Criteria for how algorithms of this type are used.
	No parameters are used

	DSOV BILL-ID
	THIS ALGORITHM IS ONLY USED IF YOU PRACTICE OPEN-ITEM ACCOUNTING.

This payment match type algorithm is used to match a payment to FT’s associated with a specific bill. The specific bill is identified on the payment’s match value.

This algorithms works as follows:

If the account is not an open-item account (as defined on the account’s customer class), this algorithm does nothing and the normal distribution algorithm as specified on the account’s customer class is used to distribute the payment.

If the account is an open-item account, the system creates a match event for the account and calculates two amounts:

 - the amount of unmatched FT’s linked to the bill identified on the payment’s match value

- the amount of unmatched FT’s linked to bills with a bill date on/before the match value’s bill’s bill date

What happens next is dependent on the amount of the payment and these two amounts.

- If the payment equals or exceeds the greater of these two amounts, all unmatched FT’s linked to bills with a bill date on/before the match value’s bill’s bill date are linked to the match event and the payment is distributed amongst these FT’s SA’s accordingly. If the payment exceeds the sum of these FT’s, the overpayment processing is handled as per the payment override algorithm defined on the account’s customer class – we strongly recommend this algorithm be one that keeps the overpayment on a separate service agreement (see OVRPYCREDSA for more information).

- Otherwise, if the payment equals the sum of the unmatched FT’s linked to the match value’s bill, all such unmatched FT’s are linked to the match event and the payment is distributed amongst these FT’s SA’s accordingly. This would only happen if the payment is for the new charges on the bill but doesn’t cover the entire outstanding balance.

- Otherwise, the payment is distributed using the customer class’s standard payment distribution algorithm and none of the bill’s FT’s will be linked to the match event. This match event will remain unbalanced and a user will have to manually rectify the situation.

Note well, the account ID making the payment must be the same as the account ID associated with the bill specified in the payment’s match value. If not, an error is produced by this algorithm.

Refer to Match Types for how algorithms of this type are used.
	No parameters are used

	DSOV SA-ID
	This payment match type algorithm is used to match a payment to a specific service agreement.

This algorithms works as follows:

- If the account is not an open-item account (as defined on the account’s customer class), a payment segment is created for the SA ID referenced in the payment’s match type.

- If the account is an open-item account, the system creates a match event for the account. If the sum of the open-items (i.e., FT’s that are not currently linked to a match event) equal the amount of the payment, all of the open-items are linked to the match event. Otherwise, the match event will remain unbalanced and a user will have to manually rectify the situation (by either canceling the match event or defining the specific open-items that are covered by the payment).

Note well, the account ID making the payment must be the same as the account ID associated with the SA specified in the payment’s match value. If not, an error is produced by this algorithm.

Refer to Match Types for how algorithms of this type are used.
	No parameters are used

	DUE DT OVRD
	This override bill due date algorithm MAY override a bill’s due date. There are two ways to override this date. Note that only one will be done and the first parameter will always have the higher priority (if both parameters are populated).

· If the account has a characteristic type equal to the value of parameter 1, we add the respective characteristic value to the bill date and adjust this date to a work-day (if necessary) to come up with the bill’s due date.

· If the due date was not overridden by the first method, we check if the account has a characteristic type equal to the value of parameter 2. If so, we insert the value of parameter 2 into the previously calculated due date to create an “override due date”. If the previously computed bill due date is later than the new due date, we add a month to the override due date. Note well, if the value of parameter 2 is greater than 28 and the resultant override due date is invalid for a given month, the original due date will be used.

If neither of the above applies for the account, the normal due date calculation (using the customer class’ override due days) is not overridden.

Refer to Setting Up Customer Classes for how algorithms of this type are used.
	Param 1 = Characteristic type on account that contains override days till due

Param 2 = Characteristic type on account that contains override due DAY

	DV VAL DFLT
	The system will set the status of a device test to the value specified on Device Test Status.

Refer to Device Test Validation for how algorithms of this type are used.
	Param 1 = Device Test Status

	DVRDATE

	This algorithm type determines if a device test’s test component result is a date. The Date Format parameter defines the required format of the date:

· A value of MM-DD-YYYY means the date should be in the format MM-DD-YYYY

· A value of YYYY-MM-DD means the date should be in the format YYYY-MM-DD

Refer to Setting Up Component Test Types for how algorithms of this type are used.
	Param 1 = Date Format

	DVTRCRFCT

	This algorithm type determines if a device test’s test component result is a valid kWh correction factor.

The following validation takes place:

· This validation will only take place if the device test is associated with a user (as opposed to being associated with a 3rd party service provider). Escape the routine if the device test is linked to a service provider.

· Check if P6 is numeric, if no, generate an error

· If P7 and P8 are non-blank, check if P6 is between P7 and P8, if no, generate an error

· If any values of P9 through P18 are non-blank, P6 must be one of these values

· Check if P6 = P5 / (((P1 / P2) / P3) * P4), if no, generate an error

Refer to Setting Up Component Test Types for how algorithms of this type are used.
	Param 1 = Char Type of Meter Kh

Param 2 = Char Type of No of Meter Elements

Param 3 = Char Type of Test Standard Kh

Param 4 = Result Seq of Meter Revolutions

Param 5 = Result Seq of Standard Display

Param 6 = Result Seq of Correction Factor

Param 7 = Range Start

Param 8 = Range End

Param 9 = Defined Value 1

Param 10 = Defined Value 2

Param 11 = Defined Value 3

Param 12 = Defined Value 4

Param 13 = Defined Value 5

Param 14 = Defined Value 6

Param 15 = Defined Value 7

Param 16 = Defined Value 8

Param 17 = Defined Value 9

Param 18 = Defined Value 10

	DVTRDISPLDV

	This algorithm type determines if a device test’s test component result is a valid display deviation.

The following validation takes place:

· This validation will only take place if the device test is associated with a user (as opposed to being associated with a 3rd party service provider). Escape the routine if the device test is linked to a service provider.

· Check if P3 is numeric, if no, generate an error

· If P4 and P5 are non-blank, check if P3 is between P4 and P5, if no, generate an error

· If any values of P6 through P15 are non-blank, P3 must be one of these values

· Check if P3 = (P1 – P2) * -1, if no, generate an error

Refer to Setting Up Component Test Types for how algorithms of this type are used.
	Param 1 = Result Seq of Test kW

Param 2 = Result Seq of Display kW

Param 3 = Result Seq of Display Deviation

Param 4 = Range Start

Param 5 = Range End

Param 6 = Defined Value 1

Param 7 = Defined Value 2

Param 8 = Defined Value 3

Param 9 = Defined Value 4

Param 10 = Defined Value 5

Param 11 = Defined Value 6

Param 12 = Defined Value 7

Param 13 = Defined Value 8

Param 14 = Defined Value 9

Param 15 = Defined Value 10

	DVTRDTCORRF

	This algorithm type determines if a device test’s test component result is a valid KW correction factor.

The following validation takes place:

· This validation will only take place if the device test is associated with a user (as opposed to being associated with a 3rd party service provider). Escape the routine if the device test is linked to a service provider.

· Check if P3 is numeric, if no, generate an error

· If P4 and P5 are non-blank, check if P3 is between P4 and P5, if no, generate an error

· If any values of P6 through P15 are non-blank, P3 must be one of these values

· Check if P3 = P2/(P2 + P1), if no, generate an error

Refer to Setting Up Component Test Types for how algorithms of this type are used.
	Param 1 = Result Seq of Display Deviation

Param 2 = Result Seq of Full Scale KW

Param 3 = Result Seq of Correction Factor

Param 4 = Range Start

Param 5 = Range End

Param 6 = Defined Value 1

Param 7 = Defined Value 2

Param 8 = Defined Value 3

Param 9 = Defined Value 4

Param 10 = Defined Value 5

Param 11 = Defined Value 6

Param 12 = Defined Value 7

Param 13 = Defined Value 8

Param 14 = Defined Value 9

Param 15 = Defined Value 10

	DVTRFULLSCKW

	This algorithm type determines if a device test’s test component result is a valid full scale KW.

The following validation takes place:

· This validation will only take place if the device test is associated with a user (as opposed to being associated with a 3rd party service provider). Escape the routine if the device test is linked to a service provider.

· Check if P4 is numeric, if no, generate an error

· If P5 and P6 are non-blank, check if P4 is between P5 and P6, if no, generate an error

· If any values of P7 through P16 are non-blank, P4 must be one of these values

· Check if P4 = (P1 * P2 * P3)/1000, if no, generate an error

Refer to Setting Up Component Test Types for how algorithms of this type are used.
	Param 1 = Characteristic Type of Number of Elements

Param 2 = Characteristic Type of Class Amps

Param 3 = Characteristic Type of Volts

Param 4 = Result Seq of Full Scale kW

Param 5 = Range Start

Param 6 = Range End

Param 7 = Defined Value 1

Param 8 = Defined Value 2

Param 9 = Defined Value 3

Param 10 = Defined Value 4

Param 11 = Defined Value 5

Param 12 = Defined Value 6

Param 13 = Defined Value 7

Param 14 = Defined Value 8

Param 15 = Defined Value 9

Param 16 = Defined Value 10

	DVTRNUMERIC

	This algorithm type determines if a device test’s test component result is numeric.

Refer to Setting Up Component Test Types for how algorithms of this type are used.
	No parameters are used

	DVTRNUMRG

	This algorithm type determines if a device test’s test component result is numeric within a range of values (defined by Range Start and Range End).

Refer to Setting Up Component Test Types for how algorithms of this type are used.
	Param 1 = Range Start

Param 2 = Range End

	DVTRPRCTDIFF

	This algorithm type determines if a device test’s test component result is a valid percent difference for a gas meter.

The following validation takes place:

· This validation will only take place if the device test is associated with a user (as opposed to being associated with a 3rd party service provider). Escape the routine if the device test is linked to a service provider.

· Check if P3 is numeric, if no, generate an error

· If ((|P1 –P2| / P1) * 100) > P3, generate an error

Refer to Setting Up Component Test Types for how algorithms of this type are used.
	Param 1 = Result Seq of As Found Transducer Pressure At Operating Conditions

Param 2 = Result Seq of As Found Calibrated Test Standard Pressure

Param 3 = Characteristic Type of Compliance Percent Check Value

	DVTRPRESVERF
	This algorithm type determines if a device test’s test component result is a valid gas field pressure.

The following validation takes place:

· This validation will only take place if the device test is associated with a user (as opposed to being associated with a 3rd party service provider). Escape the routine if the device test is linked to a service provider.

· If P1 NOT= P2, generate an error

Refer to Setting Up Component Test Types for how algorithms of this type are used.
	Param 1 = Result Seq of Test Pressure

Param 2 = Characteristic Type of Delivery Pressure

	DVTRSPINTM
	This algorithm type determines if a device test’s test component result is a valid gas spin time.

The following validation takes place:

· This validation will only take place if the device test is associated with a user (as opposed to being associated with a 3rd party service provider). Escape the routine if the device test is linked to a service provider.

· If P1 < P2, generate an error

Refer to Setting Up Component Test Types for how algorithms of this type are used.
	Param 1 = Result Seq of Spin Time

Param 2 = Characteristic Type of Manufacturer Test Standard Spin Time

	DVTRTESTKW

	This algorithm type determines if a device test’s test component result is a valid test KW.

The following validation takes place:

· This validation will only take place if the device test is associated with a user (as opposed to being associated with a 3rd party service provider). Escape the routine if the device test is linked to a service provider.

· Check if P5 is numeric, if no, generate an error

· If P6 and P7 are non-blank, check if P5 is between P6 and P7, if no, generate an error

· If any values of P8 through P17 are non-blank, P5 must be one of these values

· Check if P5 = (P1 * P2 * P3 * P4)/1000, if no, generate an error

Refer to Setting Up Component Test Types for how algorithms of this type are used.
	Param 1 = Characteristic Type of Test Standard Kh

Param 2 = Result Seq of Test Standard Revolutions

Param 3 = Characteristic Type of Number Of Meter Elements

Param 4 = Characteristic Type of Demand Interval Per Hour

Param 5 = Result Seq of Test kW

Param 6 = Range Start

Param 7 = Range End

Param 8 = Defined Value 1

Param 9 = Defined Value 2

Param 10 = Defined Value 3

Param 11 = Defined Value 4

Param 12 = Defined Value 5

Param 13 = Defined Value 6

Param 14 = Defined Value 7

Param 15 = Defined Value 8

Param 16 = Defined Value 9

Param 17 = Defined Value 10

	DVTRVALNUM
	This algorithm type determines if a device test’s test component result is in a range of values and/or in a predefined list of values.

The following validation takes place:

· Check if the component result is numeric, if no, generate an error

· If P1 and P2 are non-blank, check if the component result is between P1 and P2, if no, generate an error

· If any values of P3 through P12 are non-blank, component result must be one of these values

Refer to Setting Up Component Test Types for how algorithms of this type are used.
	Param 1 = Range Start

Param 2 = Range End

Param 3 = Defined Value 1

Param 4 = Defined Value 2

Param 5 = Defined Value 3

Param 6 = Defined Value 4

Param 7 = Defined Value 5

Param 8 = Defined Value 6

Param 9 = Defined Value 7

Param 10 = Defined Value 8

Param 11 = Defined Value 9

Param 12 = Defined Value 10

	DVTSTR17
	This device test algorithm validates two conditions:

First, it checks the test type’s location against the meter location. The Location is defined in the Characteristic Type for Test Location on the Device Test Type and its valid values are defined in Valid Value when Device Installed and when Device Not Installed. The system will check against the actual meter location on the test date. If the location is not valid, a To Do List will be created for the Invalid Test Location To Do Type and Role.

Second, the test results are checked (in Result Sequence To Be Validated). The results are checked against different percentage ranges (Low and High Value) for residential (indicated using Revenue Class Code) versus non-residential customers. If this percent is outside of the high / low limits specified in the input parms, the test will fail and a To Do list will be created using the appropriate To Do List Error code and role.

Refer to Setting Up Component Test Types for how algorithms of this type are used.
	Param 1 = Invalid Test Location To Do Type

Param 2 = Invalid Test Location To Do Role (optional)

Param 3 = Revenue Class Code

Param 4 = Result Sequence To Be Validated

Param 5 = Low Value – Residential

Param 6 = High Value – Residential

Param 7 = To Do Type – Residential

Param 8 = To Do Role – Residential (optional)

Param 9 = Low Value – Non Residential

Param 10 = High Value – Non Residential

Param 11 = To Do Type – Non Residential

Param 12 = To Do Role – Non Residential (optional)

Param 13 = Charactersitc Type for Param 14 = Test Location

Param 14 = Valid Value when “Device Installed”

Param 15 = Valid Value when “Device Not Installed”

	FACMPL-FLATC
	This algorithm type is used when a field activity is completed.

This algorithm type levies a flat charge. The type of adjustment and the amount are defined on the Adjustment Type.

Refer to Setting Up Field Activity Types for how algorithms of this type are used.
	Param 1 = Adjustment Type

	FGLCNSTR-D
	This algorithm type is used during the GL interface background process to construct the GL account that is interfaced to your general ledger. This algorithm constructs the GL account by extracting the effective-dated GL account associated with the distribution codes being interfaced.

Refer to Setting Up Distribution Codes for how algorithms of this type are used.
	No parameters are used

	IPFCSACS
	This interval data derivation algorithm creates a new interval data set (i.e., interval data curves) by subtracting or adding two existing interval data sets.

This algorithm assumes that all data the existing interval sets are of the same interval size. Moreover, the algorithm assumes all source interval data curves are continuous within the derivation period.

The First Interval Profile Relationship Type and Second Interval Profile Relationship Type define the source curves.

The parameter Subtract/Add whether subtraction or addition should be performed.

Refer to Setting up Interval Profile Types for how algorithms of this type are used.
	Param 1 = First Interval Profile Relationship Type

Param 2 = Second Interval Profile Relationship Type

Param 3 = Subtract / Add ('-'/'+')

	LL REV
	This initiate a stop for a SA algorithm causes service to be started under a landlord’s account when a tenant stops service at a service point covered by a landlord agreement. The landlord’s account is defined on the landlord agreement, if any, linked to the stopped SA’s service point’s premise.

The Minimum Number of Days parameter is used when there already exists a pending start in the future of the service point being stopped. When this occurs, the system determines the number of days between the stop tenant and the start tenant. If the gap is at least X days wide (where X is the value of the parameter), a pending start will be created for the landlord for the gap.

Refer to SA Type – Algorithms for how algorithms of this type are used.
	Param 1 = Minimum Number of Days

	MRRCREAM
	This meter read remark algorithm adds a Bill Message Code to the account associated with the meter read when a meter read is added with a meter read remark that references this algorithm. The Bill Message Type Flag is used to indicate if the bill message code is Temporary (T) or Permanent (P).

Refer to Setting Up Meter Read Remarks for how algorithms of this type are used.
	Param 1 = Bill Message Code

Param 2 = Bill Message Type Flag

	MRRCRECC
	This meter read remark algorithm creates a customer contact when a meter read is added with a meter read remark that references this algorithm. The Contact Class and Contact Type are used to create the customer contact. The customer contact is linked to the main person associated with the account that is associated with the meter read.

Refer to Setting Up Meter Read Remarks for how algorithms of this type are used.
	Param 1 = Contact Class

Param 2 = Contact Type

	MRRCREFA
	When a meter read is added with a meter read remark that references this algorithm, the system creates a field activity for the service point associated with the meter read. The designated Field Activity Type is used to create the appropriate field activity.

Refer to Setting Up Meter Read Remarks for how algorithms of this type are used.
	Param 1 = Field Activity Type Code

	MR EST TREND
	The system estimates consumption according to the documented explanation How Is Consumption Estimated?. The parameter – Minimum Days Between Reads – controls the date before which the system looks for the previous reading.

Refer to Setting Up Trend Areas for how algorithms of this type are used.
	Param 1 = Minimum Days Between Reads

	MTR SEL RNDM
	This algorithm is responsible for selecting meters for testing. It randomly selects meters of a given manufacturer and model that haven't been tested in Z months (months since previous test). Meters that have been received for more than X months (maximum age limit) and meters that have been received for less than Y months (minimum age limit) are excluded. For example, if you want to test meters that are 5 years old, you would set the maximum age limit to 72 and the minimum age limit to 60.

Refer to Device Test Selection for how algorithms of this type are used.
	Param 1 = Manufacturer

Param 2 = Model

Param 3 = Months since Previous Test

Param 4 = Minimum Age Limit (months)

Param 5 = Maximum Age Limit (months)

	NEW SA TODO
	This SA creation algorithm creates a ToDo entry (using the ToDo Type and ToDo Role (if specified)) when a service agreement is added.

Refer to SA Type – Algorithm (Bill Pre Completion Algorithm) for how algorithms of this type are used.
	Param 1 = ToDo Type

Param 2 = ToDo Role (optional)

	NOT FORMAT
	This notification download formatting algorithm is a “dummy” algorithm that should be used as a sample when you need to create your own notification download formatting algorithms.

Refer to Setting Up Notification Download Profiles for how algorithms of this type are used.
	No parameters are used

	OFSDGRP DFLT
	This algorithm type returns the default dispatch group defined on Field Service Control for the Service Type, Field Activity and Operation Area.

Refer to Field Service Control for how algorithms of this type are used.
	No parameters are used

	ONLN-BL-DSP
	This process is used to generate a bill image for online bill display purposes.

Refer to Defining Installation Options for how algorithms of this type are used.
	No parameters are used

	OVRPY-CREDSA
	This overpayment algorithm will apply an overpayment to an Excess Credit SA. If a non-canceled and non-closed Excess Credit SA exists, the credit will be applied to it. If not, a new excess credit SA is created using CIS Division and SA Type.

Refer to Overpayment for more information on overpayment.

Refer to Customer Class – Algorithm for how algorithms of this type are used.
	Param 1 = CIS Division

Param 2 = SA Type

	OVRPY-PPRTY
	This overpayment algorithm will apply an overpayment to the highest priority SA which is eligible for overpayment (as specified on the SA type).

Refer to Overpayment for more information on overpayment.

Refer to Customer Class – Algorithm for how algorithms of this type are used.
	No parameters are used

	PAY FRZ O-I
	THIS ALGORITHM IS ONLY USED IF YOU PRACTICE OPEN-ITEM ACCOUNTING.

This payment freeze algorithm is responsible for linking a payment’s financial transactions (FT’s) to the match event that was created when the payment was distributed.

The parameters are only used if FT’s linked to designated SA types should be excluded from the match event. This would be useful, for example, if you want to exclude the payment segment used to book an overpayment (there is no way this payment segment could be matched to outstanding debt).

Refer to Customer Class – Algorithm for how algorithms of this type are used.

Refer to Payments And Match Events for more information about how this algorithm is invoked.
	Param 1 = Count of excluded SA type(s) [0 - 4]

Param 2 = CIS Division (1) (optional)

Param 3 = SA Type Code (1) (optional)

Param 4 = CIS Division (2) (optional)

Param 5 = SA Type Code (2) (optional)

Param 6 = CIS Division (3) (optional)

Param 7 = SA Type Code (3) (optional)

Param 8 = CIS Division (4) (optional)

Param 9 = SA Type Code (4) (optional)

	PAY SPR
	This algorithm is used to increase how much is owed to a service provider. This results in the generation of an adjustment (the adjustment type is defined using Adjustment Type).

Refer to Service Provider – Detail and Technical Implementation Of Paying The Service Provider for how algorithms of this type are used.
	Param 1 = Adjustment Type

	PHN-FMT
	This phone type validation algorithm has two purposes:

- It can format contiguous numbers into a format consistent with local customs

- It validates that a phone number is in one of 9 different valid formats.

The valid formats are defined using the parameters of the algorithm. For example, if your customers are in North America, you would have a single valid format of (999) 999-9999. Note, at least one format is required.

Note that the FIRST format for each phone format algorithm will be used as the storage format for those types of phone numbers. The set of first formats of all phone format algorithms will be available in Control Central phone number search options.

Refer to Defining Phone Types and Control Central Alternate Search for how algorithms of this type are used.
	Param 1 = Format 1

Param 2 = Format 2 (optional)

Param 3 = Format 3 (optional)

Param 4 = Format 4 (optional)

Param 5 = Format 5 (optional)

Param 6 = Format 6 (optional)

Param 7 = Format 7 (optional)

Param 8 = Format 8 (optional)

Param 9 = Format 9 (optional)

	PP BY STATUS
	This control central alert algorithm counts the number of Pay Plans for each Pay Plan Status whose start date is within the last X months (X being the number of months cutoff).

The valid status values are 10-Pending, 20-Active, 30-Canceled, 40-Broken, 50-Kept.

The two navigation key parameters are used to tell the system where to drill to if a user clicks on the alert in control central. Navigation Key defines the name of the transaction. Navigation Key Field Name defines the field whose value is passed to the transaction. For example, if you want the user to be taken to the pay plan maintenance transaction, this transaction’s navigation key is payPlanMaint and its navigation key field name is ACCT_ID. The easiest way to find a transaction’s navigation key is to go to Business Process - Main and use the search facilities on navigation key. This query will also show you the field name that must be specified.

Warning! This algorithm can only be used to drill to a transaction that has a single field passed to it.

Refer to Installation Options – Algorithms and to The Big Picture Of Pay Plans for how algorithms of this type are used.
	Param 1 = Number of Months Cutoff

Param 2 = Pay Plan Status

Param 3 = Navigation Key

Param 4 = Navigation Key Field Name

	PP OVRD ARS
	This algorithm takes the arrears balances of an account’s debt class, and adjusts/reduces them by the amount of the scheduled payments for pay plans of the same debt class.

Refer to A Pay Plan Insulates Overdue Debt for more information about how algorithms of this type are used.

Refer to Setting Up Debt Classes for how algorithms of this type are used.
	No parameters are used.

	PSEG-AC
	THIS ALGORITHM IS ONLY USED IF YOU PRACTICE CASH ACCOUNTING.

This algorithm creates a financial transaction for a payment segment where:

· Payoff amount = pay segment amount

· Current amount = pay segment amount

· The general ledger is affected

· Holding payable balances are relieved in proportion to the amount of receivables that are reduced by the payment segment

The only difference between this algorithm and Payoff Amt = Current Amt = Pay Amt is that this algorithm also relieves liability balances that are being held until payment is received. If you practice cash accounting, this option would be used for all payment segments other than those used to pay for charitable contributions. If you do not practice cash accounting, you would not use this algorithm.

Refer to Payment Segments and Cash Accounting for more information about what this algorithm type does.

Refer to Payment Segment Type for how algorithms of this type are used.
	No parameters are used.

	PSEG-CA
	This algorithm creates a financial transaction for a payment segment where:

· Payoff amount = 0.

· Current amount = payment segment amount.

· The general ledger is affected

This option would be used for charitable contribution pay segments. Payoff amount is zero because it should not have been booked when the contribution was billed and therefore there is nothing to relieve when it’s paid.

Refer to Payment Segment Type for how algorithms of this type are used.
	No parameters are used.

	PSEG-NM
	This algorithm creates a financial transaction for a payment segment where:

· Payoff amount = payment segment amount.

· Current amount = payment segment amount.

· The General Ledger is affected

This option would be used for all payment segments other than those used to pay for charitable contributions if you practice accrual accounting. Refer to Accrual versus Cash Accounting Example for more information.

Refer to Payment Segment Type for how algorithms of this type are used.
	No parameters are used.

	PX VALUE
	This rate component value calculation algorithm is used to calculate a rate component’s value by using the California PX derivation method. At a high level, this algorithm extracts a PX price from the interval value table based on the end date of the bill period and the number of weeks in the bill period. The Bill Factor controls the specific PX prices that are extracted from the interval value table.

Refer to Rate Component – Main Information for how algorithms of this type are used. Refer to Pricing Non Interval Consumption Using Interval Prices for more information.
	Param 1 = Bill Factor

	PYDIST-DELPY
	This payment distribution algorithm distributes a payment based on whether the customer has delinquent debt:

· If the customer has delinquent debt, the payment is distributed amongst the account’s service agreements base on each service agreement’s SA type’s Delinquent Payment Priority. If service agreements have the same Delinquent Payment Priority, debt is relieved based on the age of the arrears. If the Delinquent Payment Priority and the Debt age are the same for more than one service agreement, the payment is prorated between the service agreements.

· If the customer does not have delinquent debt, the payment is distributed amongst the account’s service agreements base on each service agreement’s SA type’s Payment Priority (as opposed to Delinquent Payment Priority). If service agreements have the same Payment Priority, debt is relieved based on the age of the arrears. If the Payment Priority and the Debt age are the same for more than one service agreement, the payment is prorated between the service agreements.

Refer to Customer Class – Algorithm for how algorithms of this type are used.
	No parameters are used.

	PYDIST-PPRTY
	This payment distribution algorithm distributes a payment amongst the account’s service agreements based on each service agreement’s SA type’s Payment Priority. If service agreements have the same Payment Priority, debt is relieved based on the age of the arrears. If the Payment Priority and the Debt age are the same for more than one service agreement, the payment is first pays off one service agreement before the other(s) are reduced (i.e., the payment is NOT prorated).

Refer to Payment Distribution for a more detailed illustration of this algorithm.

Refer to Customer Class – Algorithm for how algorithms of this type are used.
	No parameters are used.

	RCIPRS
	This interval pricing rate component algorithm applies an interval price curve to an interval data curve to arrive at a single line item charge on a bill. The interval price curve is identified by the bill factor defined on the rate component. The interval data curve is defined by all the interval profiles linked to the SA for the Interval Profile Relationship Type specified on the rate component.

This algorithm assumes that the interval data curve and the interval price curve are of the same interval size.

The first parameter – Continuous (Y/N) – indicates whether the Interval Data curve should be validated to be continuous within the Bill Line period. If this parameter is Y, the system validates that no gaps exist in the intervals. If gaps exist, a helpful bill segment error is produced. If this parameter is N, the system still checks that no gaps exist, but the error message is not as helpful. The reason we provide these values is because a value of Y requires a resource intensive SQL statement to execute which can impact performance.

The second parameter – Process Data Values indicates which Interval Data values should be processed. If left empty, all data values are processed. “P” should be specified if prices should be applied only to positive interval data quantities. “N” should be specified if prices should be applied only to negative interval data quantities.

Refer to Setting Up Interval Pricing Rate Components for how algorithms of this type are used.
	Param 1 = Continuous (Y,N)

Param 2 = Process Data Values (ALL=blank, Positive=P, Negative=N)

	RCIPRS-ADT
	This interval pricing audit algorithm is called when a user pushes the audit button on bill lines that were produced by applying an interval price to interval consumption (i.e., bill lines produced by an interval pricing rate component). This algorithm provides the details used to present the interval prices and quantities in graphical format.

The logic used in this algorithm must correspond to the one use in the Interval Pricing algorithm actually used to create the Bill Calc Line. Therefore, it is recommended that both algorithms share common code as much as possible.

This algorithm corresponds to the Interval Pricing – Same Interval Size algorithm.

The first parameter – Process Data Values
- indicates which Interval Data values should be processed. If left empty, all data value are retrieved. “P” should be specified if only positive interval data quantities are to be retrieved. “N” should be specified if only negative interval data quantities are to be retrieved.

Refer to Setting Up Interval Pricing Rate Components for how algorithms of this type are used.
	Param 1 = Process Data Values (ALL=blank, Positive=P, Negative=N)

	RCSTEPMULTSQ
	This rate component step manipulation algorithm is used to change a “stepped” SQ rate component’s high and/or low boundaries by multiplying each by the value of a UOM/TOU/SQI.

Whether the multiplication is performed against the Low, High, or Both boundaries is controlled by the value of parameter 4.

If the UOM/TOU/SQI contains the number of days in the billing period (some organizations have dynamic steps that are calculated based on the number of days in the billing period), set Prorate to N because you do not want the algorithm to prorate the steps (because they will be prorate automatically when they are multiple by the number of days in the billing period). Otherwise, Prorate should be set to Y.

Refer to Rate Component – Main Information for how algorithms of this type are used.
	Param 1 = UOM

Param 2 = TOU

Param 3 = SQI

Param 4 = Indicates if the multiplication should be done on the steps Low and/or High step boundaries. LOW means only the low boundary will be changed, HIGH means only the high boundary will be changed, BOTH means both the low and high will be changed.

Param 5 = Prorate (Y or N). This parameter controls whether the algorithm prorates the step boundaries if the billing period is outside of the rate schedule’s frequency.

	RCTMPS
	This TOU pricing algorithm has two functions:

1) If Pricing Only is set to N, it maps interval data into TOU periods (and the result are added to the SQ information on the bill segment). In addition, you must specify the other parameters (two through 5). Please see the RCTMS algorithm type for a description of how these parameters operate.

2) It generates bill lines using the rate component’s bill factor for the TOU values associated with the UOM / SQI that is referenced on the rate component (if any). If UOM / SQI are not specified on the rate component, the UOM / SQI come from the interval profile type (however, the SQI can be overridden if SQI To Create is non-blank).

Note, it is important that the bill factor referenced on the rate component is a “time-of-use” bill factor (i.e., one that has a separate price for each time-of-use period defined in the bill factor’s time-of-use group).

The TOU values for which bill lines are generated are defined on the TOU group referenced on the TOU map type which is referenced on the SA’s TOU map (referenced by the rate component’s TOU Map Relationship Type). If multiple TOU groups exist during the bill period, the SA type’s rate selection date is used to select one of them.

Refer to Setting Up TOU Mapping Rate Components for how algorithms of this type are used.
	Param 1 = Pricing Only (Y/N)

Param 2 = SQI To Create (optional)

Param 3 = Driving Curve D=Interval Data(Default), T=TOU Map

Param 4 = Continuous Driving Curve: Y(Default)/N

Param 5 = How To Calculate: SUM(Default), MAX

	RCTMS
	This TOU pricing algorithm maps an interval data curve using a TOU Map curve to arrive at a set of SQ’s to be added to the SQ collection. Please note that no charge is produced by this algorithm. The SQ’s are billed using subsequent SQ rate components or TOU pricing rate components.

Each entry in the SQ collection is identified by the interval data’s UOM and a TOU of the TOU Map curve’s TOU Group. The SQI used to build the SQ collection will be populated based on the following hierarchy: if you specify an SQI on the rate component, it will be used. If you specify an SQI to Create for the algorithm, it will be used, otherwise, the SQI in the interval data will be used.

Driving Curve defines if the consumption curve or the TOU Map is the driving curve. For each interval of the Driving Curve, there must exist an interval of the other curve.

Continuous Driving Curve defines if the driving curve needs to be continuous (i.e., no gaps) for the billing period.

How To Calculate defines if the interval data should be summed or if the high value should be selected.

The interval data curve is defined by all interval profiles linked to the SA for the Interval Profile Relationship Type specified on the RC and effective on the Bill Line period. The TOU map curve is defined by all TOU maps linked to the SA for the TOU Map Relationship Type specified on the RC and effective on the Bill Line period.

This algorithm assumes that all TOU maps are of the same TOU Group and are of a fixed interval size. Moreover, this interval size must be equal to the interval data curve interval size.

Refer to Setting Up TOU Mapping Rate Components for how algorithms of this type are used.
	Param 1 = SQI To Create (optional)

Param 2 = Driving Curve D=Interval Data(Default), T=TOU Map

Param 3 = Continuous Driving Curve: Y(Default)/N

Param 4 = How To Calculate: SUM(Default), MAX

	RCTPRS-ADT
	This time-of-use mapping audit algorithm is called when a user pushes the audit button on bill lines that were produced by rate components that use a TOU pricing algorithm. This algorithm provides the details used to present the intervals whose quantities where mapped into the respective time-of-use period in graphical format.

The logic used in this algorithm must correspond to the one use in the TOU Pricing algorithm used to create the bill line. Therefore, it is recommended that both algorithms share common code as much as possible. This algorithm corresponds to the sample TOU Pricing algorithm type RCTMPS.

The first parameter – How To Calculate - Specifies whether the result TOU SQ is a sum (SUM) of all intervals for the TOU or the interval with the highest data value (MAX).

Refer to Setting Up TOU Mapping Rate Components for how algorithms of this type are used.
	Param 1 = How To Calculate

	RCVALTHRSHSQ
	This algorithm is used to calculate a rate component’s value (i.e., price, percent, flat charge) by comparing a given UOM, TOU, SQI against a Threshold Quantity. If the UOM/TOU/SQI is less than or equal to the Threshold Quantity, the value defined in Under/Equal Amount is returned. If the UOM/TOU/SQI is greater than the Threshold Quantity, the value defined in Over Amount is returned. If the UOM/TOU/SQI combination does not exist, an error will be returned if Return Error is Y; otherwise a value of zero will be returned.

Refer to Rate Component – Main Information for how algorithms of this type are used.
	Param 1 = UOM

Param 2 = TOU

Param 3 = SQI

Param 4 = Threshold Quantity

Param 5 = Under/Equal Amount

Param 6 = Over Amount

Param 7 = Return error switch

	SASP FW CRE
	This algorithm type causes field activities to be created for pending start and pending stop service agreements shortly before the pending start / stop date IF FIELD ACTIVITIES DO NOT ALREADY EXIST (i.e., if a CSR hasn’t already created the field activities).

The Number of Days of Lead-time parameter determines the number of days before the pending start / pending stop when field activities should be created.

The Back-to-Back Threshold Days parameter is used when there exists a pending start in the future of a pending stop. If the gap between the stop and start is less than or equal to X, (where X is the value of the parameter), a single field activity will be created for the pending stop and pending stop service points. The type of field activity is determined using the back-to-back event on the service point’s SP type’s field activity type profile.

If a schedule MR exists in the future of the start / stop date and the number of days is less than or equal to Wait Time for MR Schedule, the FA type of the FA will be set to the value of FA Type for Near MR Schedule if the state of the SP and meter is consistent with the value of SP’s desired state:

5 – no device, SP disc

10 – no device, SP conn

15 – device, off, SP disc

20 – device, off, SP conn

25 – device, on, SP disc

30 – device, on, SP conn

In order to use a scheduled meter read to complete the field activity you must also run the batch process FANRMRCO (refer to Batch Processes for more information).

Refer to SA Type – Algorithms for how algorithms of this type are used.
	Param 1 = Number of Days of Lead-time (optional)

Param 2 = Back-to-Back Threshold Days (optional)

Param 3 = Wait Time for Meter Read (optional)

Param 4 = Field Activity Type for Near Meter Read Schedule

Param 5 = SP’s desired state for Meter Read

	SAT BREAK PA
	This break payment algorithm contains the logic that should be executed when a payment arrangement is broken (as a result of a user pressing the break button on the payment arrangement transaction).

This algorithm performs the following:

· It stops the payment arrangement service agreement (PA SA)

· It cancel all of the transfer adjustments that originally transferred debt to the PA SA

· It marks the payment arrangement as broken by adding a char type / value to the PA SA

· If the PA SA has a credit balance it distributes it back to the original SA’s from which debt was transferred

· If marks the account for review by the account debt monitor.

This algorithm should be specified on SA Types that have the special role of Payment Arrangement.

The first two parameters represent the Broken Payment Arrangement Type and Value that will be added to a payment arrangement service agreement if it becomes broken. These values can then be used later by the account debt monitor (via override collection criteria on collection class control) to put the customer on a harsher collection process if a broken payment arrangement is detected (because a SA exists with a given char type / value).

The third parameter is used specify the Adjustment Type that may be necessary to transfer money back to service agreements that originally contributed debt to the payment arrangement SA. This would happen if the broken payment arrangement has any debit or credit remaining after all contributing service agreement transfer adjustments have been cancelled.

The last parameter is used to specify the Cancel Reason that is used to cancel the transfer adjustments that were used to set up the payment arrangement.

Refer to Monitoring Payment Arrangements for more information about breaking payment arrangements.

Refer to SA Type – Algorithms for how algorithms of this type are used.
	Param 1 = Broken payment arrangement characteristic type

Param 2 = Broken payment arrangement characteristic value

Param 3 = Adjustment Type

Param 4 = Cancel Reason

	SEV BREAK PA
	This severance event break payment algorithm contains the logic that should be executed when a payment arrangement is broken (this is a duplicate of SAT BREAK PA).

This algorithm should be specified on severance event types that are used to break a payment arrangement.

The first two parameters represent the Broken Payment Arrangement Type and Value that will be added to a payment arrangement service agreement if it becomes broken. These values can then be used later by the account debt monitor (via override collection criteria on collection class control) to put the customer on a harsher collection process if a broken payment arrangement is detected (because a SA exists with a given char type / value).

The third parameter is used specify the Adjustment Type that may be necessary to transfer money back to service agreements that originally contributed debt to the payment arrangement SA. This would happen if the broken payment arrangement has any debit or credit remaining after all contributing service agreement transfer adjustments have been cancelled.

The last parameter is used to specify the Cancel Reason that is used to cancel the transfer adjustments that were used to set up the payment arrangement.

Refer to Monitoring Payment Arrangements for more information about breaking payment arrangements.

Refer to Setting Up Severance Process Templates for how algorithms of this type are used.
	Param 1 = Broken payment arrangement characteristic type

Param 2 = Broken payment arrangement characteristic value

Param 3 = Adjustment Type

Param 4 = Cancel Reason

	SEV CAN CRIT
	This severance process cancellation algorithm determines if a service agreement on an active severance process has debt as at the arrears date of its severance process that is less than or equal to the Cancellation Threshold Amount (if so, the severance process will be cancelled).

You would not use algorithms of this type if you Nominate A Single Service Agreement To Sever rather than sever every service agreement that’s in arrears.

Refer to How Are Severance Processes Cancelled for how this algorithm is called.

Refer to Setting Up Severance Process Templates for how algorithms of this type are used.
	Param 1 = Cancellation Threshold Amount

	SEV EVT GEN
	This severance event algorithm is a "dummy" algorithm that should be used as a sample when you need to create your own ad hoc severance event functions.

Refer to Setting Up Severance Process Templates for how algorithms of this type are used.
	No parameters are used.

	SEV EVT SEV
	This severance event algorithm will create a severance process for all SA's that belong to the debt class associated with the current severance process's service agreement.

Refer to How To Nominate A Single Service To Sever (Rather Than Sever Everything That’s In Arrears) for more information about this algorithm.

Take care, if a service agreement is related to a "they bill for us" service provider, the service agreement will not be severed.

Refer to Setting Up Severance Events for how algorithms of this type are used.
	

	SEV POST CAN
	This algorithm is called after a severance process has been cancelled (typically because the debt was paid and the SA is no longer eligible to be on the severance process). It checks to see if the process has a completed ‘disconnect’ event and, if so, starts a reconnect process using the Reconnect Severance Process Template.

Refer to Setting Up Severance Process Templates for how algorithms of this type are used.
	Reconnect Severance Process Template

	STG PAY SPR
	When an FT is frozen that is linked to a sub SA with a We Bill For Them service provider, the FT must be analyzed to determine if it should trigger a payment of a service provider. This algorithm performs this analysis and sets up the trigger to execute the Pay Service Provider Batch Process.

Refer to SA Type – Algorithm (FT Freeze Algorithm) and Technical Implementation Of Paying The Service Provider for how algorithms of this type are used.
	Param 1 = Pay Service Provider Batch Process

	STG SND CONS
	When a bill segment is frozen that is linked to a master SA with service providers who need consumption, output triggers must be created to route the consumption to the service providers. The name of the process that is stored on the trigger comes from the service provider to which the consumption will be sent. The algorithm creates these triggers.

Refer to SA Type – Algorithm (FT Freeze Algorithm) and Technical Implementation Of Routing Consumption To Service Providers for how algorithms of this type are used.
	No parameters are used

	SV CRIT DFLT
	This SA type severance criteria algorithm contains the default criteria used when no other severance criteria apply for a service agreement. Severance criteria are used when the system determines how to stop a service agreement when the customer has overdue debt and hasn't responded to a collection process. These criteria are defined on a service agreement's SA type. The first criteria algorithm to return a value of True will cause a severance process to be created (using the respective severance process template defined on the SA type's severance criteria).

This is the default criteria algorithm that should be your lowest priority condition on your SA type severance process controls.

This is a very simple algorithm that simply returns a value of True (because the default algorithm should always cause the default severance process to be used to sever the service agreement).

Refer to SA Type – Severance Criteria for how algorithms of this type are used.
	No parameters are used

	SV CRIT LS
	This SA type severance criteria algorithm checks if any person linked to the service agreement’s account has life support requirements. If so, a value of True is returned.

Severance criteria are used when the system determines how to stop a service agreement when the customer has overdue debt and hasn't responded to a collection process. These criteria are defined on a service agreement's SA type. The first criteria algorithm to return a value of True will cause a severance process to be created (using the respective severance process template defined on the SA type's severance criteria).

Refer to SA Type – Severance Criteria for how algorithms of this type are used.
	No parameters are used

	SV CRIT MMSA
	This SA type severance criteria algorithm checks if any service point linked to the service agreement being severed has a given Characteristic Type and Characteristic Value. If so, a value of True is returned.

Severance criteria are used when the system determines how to stop a service agreement when the customer has overdue debt and hasn't responded to a collection process. These criteria are defined on a service agreement's SA type. The first criteria algorithm to return a value of True will cause a severance process to be created (using the respective severance process template defined on the SA type's severance criteria).

Refer to SA Type – Severance Criteria for how algorithms of this type are used.
	Param 1 = Characteristic type on SP that indicates if the SP is a master SP

Param 2 = Characteristic value for the characteristic type that indicates if the SP is a master SP

	TBFU XFER
	This bill completion algorithm checks if there are They Bill For Us service providers linked to the master SA's on a completed bill. If it finds them:

· It transfers the receivable from the customer to the TBFU service provider by calling the Transfer A/R algorithm defined on the TBFU service provider

· It marks the financial transactions for routing to the TBFU service provider. It does this by marking the FT with the billable charge download process defined on the TBFU service provider

Refer to SA Type – Algorithm (Bill Completion Algorithm) and Technical Implementation Of A/R Transfer and Technical Implementation Of Routing Billable Charges To Service Providers for how algorithms of this type are used.
	No parameters are used

	TSMRE-LA
	This algorithm is used to estimate consumption using 3 different methods (stopping at the first successful method). It works as follows:

First, the mid-period date of the estimation period is calculated. The system then retrieves the latest bill segment for the service point whose end date is prior to the mid-period date in the prior year. For example, if the estimation period is 15 Jan 2002 through 16 Feb 2002, the mid-period date is 31 Jan 2002 and therefore the system attempts to find a bill segment whose end date is on/before 31 Jan 2001 for the service point. If the year-old bill segment is for the same account AND the bill segment is not estimated AND the number of days in this bill segment is greater than or equal to Days Sufficient For Estimation:

· If the register is non-peak, the system calculates the average amount of consumption per day on the historical bill segment, and extrapolates this for the estimation period.

· If the register is peak, the estimation amount is the same as the peak amount on the historical bill segment.

If the system is not successful in estimating using the first step, the system performs the exact logic described above. However, rather than looking for the bill segment from a year ago, it looks for the bill segment for the account and service point that immediately precedes the start date of the estimation period (and again, this bill segment must not be estimated and it must be for at least as many days as Days Sufficient For Estimation).

If the system is unsuccessful in estimating consumption, the system estimates consumption according to the documented explanation How Is Consumption Estimated?. The parameter – Minimum Days Between Reads – controls the date before which the system looks for the previous reading.

Refer to Setting Up Trend Areas for how algorithms of this type are used.
	Param 1 = Minimum days between reads

Param 2 =Days sufficient for estimation

	WF CRIT DFLT
	This workflow process criteria algorithm contains the default criteria used when no other criteria apply for a workflow process profile / notification upload type. These criteria are used when the system determines the workflow process to create to satisfy an uploaded notification. These criteria are defined on the workflow process profiled associated with the service provider who send the notification. The first criteria algorithm to return a value of True will cause a workflow process to be created (using the respective workflow process template defined on the workflow process profile).

This is the default criteria algorithm that should be your lowest priority condition.

This is a very simple algorithm that simply returns a value of True (because the default algorithm should always cause the default severance process to be used to sever the service agreement).

Refer to Setting Up Workflow Process Profiles for how algorithms of this type are used.
	No parameters are used

	WFA-CTXT
	This workflow event algorithm copies all context records from a workflow process’s corresponding notification upload staging record to the workflow process. It also sets the status of the associated workflow event Complete.

Refer to Setting Up Workflow Event Types for how algorithms of this type are used.
	No parameters are used

	WFA-FA
	This algorithm type creates a field activity (marked with the designated Field Activity Type) for the service point associated with the workflow process. It also sets the status of the associated workflow event to either Wait or Complete as per the value of Event Status (a value of 20 means that the status is Wait, a value of 30 means that the status is Complete).

Refer to Setting Up Workflow Process Profiles for how algorithms of this type are used.
	Param 1 = Field Activity Type

Param 2 = Event Status

	WFA-LETTER
	This algorithm type creates a customer contact (marked with the designated Contact Class and Contact Type) for the person associated with the account that is associated with the workflow event. It also sets the status of the associated workflow event to either Wait or Complete (a value of 20 means that the status is Wait, a value of 30 means that the status is Complete).

Refer to Setting Up Workflow Event Types for how algorithms of this type are used.
	Param 1 = Contact Class

Param 2 = Contact Type

Param 3 = Event Status

	WFA-NDS
	This algorithm type creates a notification download staging record (marked with the designated Notification Download Staging Type) for the associated workflow event. It also sets the status of the associated workflow event to either Wait or Complete as per the value of Event Status (a value of 20 means that the status is Wait, a value of 30 means that the status is Complete).

Refer to Setting Up Workflow Event Types for how algorithms of this type are used.
	Param 1 = Notification Download Staging Type

Param 2 = Event Status

	WFA-NDSRESP
	This algorithm type updates a notification download staging (NDS) record associated with a notification upload staging record. The NDS record will be marked as either “accepted” or “rejected” as per the contents of the RESPONSE_CODE field on the associated notification upload staging record. It also sets the status of the associated workflow event Complete.

Refer to Setting Up Workflow Event Types for how algorithms of this type are used.
	No parameters are used

	WFA-SAR
	This algorithm type creates an SA relationship type for the SA and service provider linked to the workflow process. Relationship Type defines the type of SA relationship. Workflow Process Context Type is used to determine the exact workflow process context entry in which to find the external ID of the service provider.

It also sets the status of the associated workflow event Complete.

Refer to Setting Up Workflow Event Types for how algorithms of this type are used.
	Param 1 = Relationship Type

Param 2 = Workflow Process Context Type

	WFA-VALIDATE
	This algorithm type validates the sample notification upload staging sample extension record. It sets the status of the associated workflow event to either Failed or Complete depending on the validity of the NUS extension record.

Refer to Setting Up Workflow Event Types for how algorithms of this type are used.
	No parameters are used

	WFA-WFPROC
	This algorithm type creates a new workflow process using the Workflow Process Template. It also sets the status of the associated workflow event Complete.

Refer to Setting Up Workflow Event Types for how algorithms of this type are used.
	Param 1 = Workflow Process Template

	WFA-WL,EMAIL
	This algorithm type marks a workflow event so that the TD-WFEVT background process will create a ToDo entry. The ToDo entry that’s created by this process uses the algorithm’s ToDo Type and ToDo Role (if specified).

It also sets the status of the associated workflow event to either Wait or Complete as per the value of Event Status (a value of 20 means that the status is Wait, a value of 30 means that the status is Complete).

Refer to Setting Up Workflow Event Types for how algorithms of this type are used.
	Param 1 = ToDo Type

Param 2 = ToDo Role (optional)

Param 3 = Event Status

	WFF-FA
	This workflow event failure algorithm type creates a field activity (marked with the designated Field Activity Type) for the service point associated with the workflow process.

Refer to Setting Up Workflow Event Types for how algorithms of this type are used.
	Param 1 = Field Activity Type

	WFF-LETTER
	This workflow event failure algorithm type creates a customer contact (marked with the designated Contact Class and Contact Type) for the person associated with the account that is associated with the workflow event.

Refer to Setting Up Workflow Event Types for how algorithms of this type are used.
	Param 1 = Contact Class

Param 2 = Contact Type

	WFF-NDS
	This workflow event failure algorithm type creates a notification download staging record (marked with the designated Notification Download Staging Type) for the associated workflow event.

Refer to Setting Up Workflow Event Types for how algorithms of this type are used.
	Param 1 = Notification Download Staging Type

	WFF-WFPROC
	This workflow event failure algorithm type creates a new workflow process using the Workflow Process Template.

Refer to Setting Up Workflow Event Types for how algorithms of this type are used.
	Param 1 = Workflow Process Template

	WFF-WL,EMAIL
	This algorithm type marks a workflow event so that the TD-WFEVT background process will create a ToDo entry. The ToDo entry that’s created by this process uses the algorithm’s ToDo Type and ToDo Role (if specified).

Refer to Setting Up Workflow Event Types for how algorithms of this type are used.
	Param 1 = ToDo Type

Param 2 = ToDo Role (optional)

	WO A/P ADJ
	The system will evaluate whether or not the total SA balances within a debt class qualify for an A/P adjustment. Note that this routine has an additional complexity since it is desirable that just one check is created for an account – not one for each service agreement. This means that we will transfer all unpaid balances to one of the service agreements and then cut the check from it.

First, each SA’s current balance will be set equal to its payoff balance (the adjustment type is defined using Sync Adjustment Type).

Next, each SA’s balance will be transferred to a single service agreement (the adjustment type is defined using Xfer Adjustment Type).

Next, an A/P adjustment is created for the credit amount to be refunded via a check (the adjustment type is defined using A/P Adjustment Type).

Refer to Setting Up Write-off Control for how algorithms of this type are used.
	Param 1 = Adjustment Type (Synch)

Param 2 = Adjustment Type (Xfer)

Param 3 = Adjustment Type (A/P)

	WO BREAK PA
	This write off event break payment algorithm contains the logic that should be executed when a payment arrangement is broken (this is a duplicate of SAT BREAK PA).

This algorithm should be specified on write-off event types that are used to break a payment arrangement.

The first two parameters represent the Broken Payment Arrangement Type and Value that will be added to a payment arrangement service agreement if it becomes broken. These values can then be used later by the account debt monitor (via override collection criteria on collection class control) to put the customer on a harsher collection process if a broken payment arrangement is detected (because a SA exists with a given char type / value).

The third parameter is used specify the Adjustment Type that may be necessary to transfer money back to service agreements that originally contributed debt to the payment arrangement SA. This would happen if the broken payment arrangement has any debit or credit remaining after all contributing service agreement transfer adjustments have been cancelled.

The last parameter is used to specify the Cancel Reason that is used to cancel the transfer adjustments that were used to set up the payment arrangement.

Refer to Monitoring Payment Arrangements for more information about breaking payment arrangements.

Refer to Setting Up Severance Process Templates for how algorithms of this type are used.
	Param 1 = Broken payment arrangement characteristic type

Param 2 = Broken payment arrangement characteristic value

Param 3 = Adjustment Type

Param 4 = Cancel Reason

	WO CRIT DFLT
	This write-off criteria algorithm contains the default criteria used when no other criteria apply for a collection class and write-off debt class. Write-off criteria are used when the system determines how to write-off a service agreement. These criteria are defined on the write-off controls associated with your collection classes and write-off debt classes. The first criteria algorithm to return a value of True will cause a write-off process to be created (using the respective write-off process template defined on the write-off control).

This is the default criteria algorithm that should be your lowest priority condition.

This is a very simple algorithm that simply returns a value of True (because the default algorithm should always cause the default severance process to be used to sever the service agreement).

Refer to Setting Up Write-off Control for how algorithms of this type are used.
	No parameters are used

	WO CRIT NCD
	This write-off criteria algorithm checks if a customer has a non-cash deposit. If so, it returns a value of true.

Write-off criteria are used when the system determines how to write-off a service agreement. These criteria are defined on the write-off controls associated with your collection classes and write-off debt classes. The first criteria algorithm to return a value of True will cause a write-off process to be created (using the respective write-off process template defined on the write-off control).

Refer to Setting Up Write-off Control for how algorithms of this type are used.
	No parameters are used

	WO EVT GENER
	This write off event algorithm is a “dummy” algorithm that should be used as a sample when you need to create your own ad hoc write off event functions.

Refer to Setting Up Write Off Event Types for how algorithms of this type are used.
	No parameters are used

	WO EVT LTR
	This write-off event algorithm creates a customer contact (which in turn is used to generate a letter) if the WO's outstanding debt meets or exceeds the Debt Threshold. The Exclude Tax Switch defines if the debt amount to compare with the threshold excludes the liabilities. Customer Contact Class and Type define the type of customer contact that is created.

Refer to Setting Up Write Off Event Types for how algorithms of this type are used.
	Param 1 = Debt Threshold Amount

Param 2 = Exclude Tax Switch (Y/N)

Param 3 = Customer Contact Class

Param 4 = Customer Contact Type

	WO EVT REVLB
	This write-off event algorithm retrieves the liabilities (typically taxes) associated with the write-off process’s SA’s and reverses them using the adjustment type provided as a parameter.

Refer to Setting Up Write Off Event Types for how algorithms of this type are used.
	Param 1 = Adjustment Type for Liability Reversals

	WO EVT SMALL
	This write-off event algorithm will reverse any liabilities (e.g., taxes) and write DOWN the remaining debt associated with a write-off process’s SA’s if the total debt is within the Maximum Credit Amount for Write Down and Maximum Debit Amount for Write Down.

Refer to Setting Up Write Off Event Types for how algorithms of this type are used.
	Param 1 = Adjustment Type for Writedown

Param 2 = Adjustment Type for Liability Reversals

Param 3 = Maximum Credit Amount for Write Down

Param 4 = Maximum Debit Amount for Write Down

	WO EVT TODO
	This write off event algorithm with create a ToDo entry if the outstanding debt of the service agreements on a write-off process meets or exceeds the Debt Threshold Amount. The Exclude Tax Switch defines if the debt amount to compare with the threshold would exclude the liabilities. ToDo Type and ToDo Role are used to created the ToDo entry.

Refer to Setting Up Write Off Event Types for how algorithms of this type are used.
	Param 1 = Debt Threshold Amount

Param 2 = Exclude Tax Switch (Y/N)

Param 3 = To Do Type

Param 4 = To Do Role (optional)

	WO SYNCH
	This write off event algorithm evaluates whether or not an SA’s current balance is equal to its payoff balance. If not, a 'synching' adjustment will be created (using the Adjustment Type). It does this for all service agreements linked to the write-off process.

This type of algorithm is typically issued before you actually start a write-off process, as current balance is meaningless at write-off time (the customer owes you the payoff balance).

Refer to Setting Up Write-off Control for how algorithms of this type are used.
	Param 1 = Adjustment Type (Synch)

	WO TRANSFER
	This write off event algorithm attempts to locate a service agreement that is not subject to write off for the account and write-off debt class, and will transfer the write-off SA’s balances to it.

First, each SA’s current balance will be set equal to its payoff balance (the adjustment type is defined using Sync Adjustment Type).

Next, each SA’s balance will be transferred to a single service agreement (the adjustment type is defined using Xfer Adjustment Type).

Refer to Setting Up Write-off Control for how algorithms of this type are used.
	Param 1 = Adjustment Type (Synch)

Param 2 = Adjustment Type (Xfer)

	WO WRITEDOWN
	This write-down algorithm evaluates whether or not the total SA balances within a debt class are small enough to ‘write down’. A ‘write down’ represents a simple adjustment that causes the SA to close (because its balance becomes zero).

First, the system checks if the total debt is within the boundaries of Maximum Credit Amount and Maximum Debit Amount. If not, no further processing takes place.

Next, each SA’s current balance will be set equal to its payoff balance (the adjustment type is defined using Sync Adjustment Type).

Next, an adjustment will be created for each SA so that its balance will become zero (the adjustment type is defined using Writedown Adjustment Type).

Refer to Setting Up Write-off Control for how algorithms of this type are used.
	Param 1 = Adjustment Type (Synch)

Param 2 = Adjustment Type (Writedown)

Param 3 = Maximum Credit Amount

Param 4 = Maximum Debit Amount

	WOEVT AGYRF
	This write-off event algorithm writes down liabilities (using the Adjustment Type for Liability Reversals) and creates a collection agency referral for Collection Agency ID if the outstanding debt meets or exceeds the Debt Threshold Amount defined as a soft parameter. The Exclude Tax Switch defines if the debt amount to compare with the threshold excludes the liabilities.

Refer to Setting Up Write Off Event Types for how algorithms of this type are used.
	Param 1 = Debt Threshold Amount

Param 2 = Collection Agency ID

Param 3 = Adjustment Type for Liability Reversals

Param 4 = Exclude Tax Switch (Y/N)

	XFER AR SPR
	This service provider transfer customer debt algorithm is used to transfer a financial balance from a customer to a service provider. This results in the generation of an adjustment (the adjustment type is defined using Adjustment Type).

Refer to Service Provider – Detail and Technical Implementation Of A/R Transfer for how algorithms of this type are used.
	Param 1 = Adjustment Type

If you need to introduce a new type of algorithm, open Admin Menu, A, Algorithm Type. Refer to The Big Picture Of Algorithms for more information.

[image: image1.png]Corlaptix™ V13.0.0 + Admin Table - Algorithm Type » Monday - Hovember 19, 2001

@DOD ORI S| (2D @6

Agorttun Type () EFRECOWSA |

Description 152 average ol smouet o recammenadepost

11 determine the average bil amant averthe fast X marihs (x i defined in Bling History Periad),

[This deposit recommendstion sigorithm calculstes the amount using the following steps: ﬂ
P Long Description [2) il the average kil amcurt by Y (Y isdefined in Depost Mtiie).

e average 8 amurt i e cacuten s the prese' g story. e scoourtsoesnct |

[ProgramHame [oPoRBAX

Aigorithm Entty[Depost Recommenaetion

o Sequence | Parameter Required

" D s [
#|= 2 [Py rercacw [
e) [

Algorithm Type

Window description

Enter an easily recognizable Algorithm Type and Description.

Enter a Long Description that describes, in detail, what algorithms of this type do.

Use Program Name to define the program to be invoked when algorithms of this type are used.

Use Algorithm Entity to define the function associated with this type of algorithm. This value is used by the system when it determines the algorithms that can be defined on a given control table. For example, on the SA type table, you must define the algorithm used to calculate late payment charges for SA’s of a given type. The system will only show algorithms that reference an Algorithm Entity of SA Type – late pay method.

The permissible values of Algorithm Entity are defined in the following table.

	Algorithm Entity
	What it’s used for

	Adhoc Value Validation
	Refer to Characteristic Type – Main.

	Adjustment Type
	Refer to Setting Up Adjustment Types

	Auto Pay Creation
	Refer to Installation Options - Algorithms.

	Auto Pay Date Calculation
	Refer to Autopay Route Types for how algorithms of this type are used.

	Auto Pay Account Validation
	Refer to Setting Up Auto Pay Source Codes.

	Bill Completion Method
	Refer to SA Type – Algorithm.

	Bill Segment Create
	Refer to Setting Up Bill Segment Types.

	Bill Segment Financial
	Refer to Setting Up Bill Segment Types.

	Bill Segment Get Consumption
	Refer to Setting Up Bill Segment Types.

	Budget Calculation
	Refer to Setting Up Budget Plans.

	Budget Monitor
	Refer to Setting Up Budget Plans.

	Budget True Up
	Refer to Setting Up Budget Plans.

	Collection Condition
	Refer to Collection Class Control.

	Collection Event
	Refer to Setting Up Collection Event Types.

	Collection Process Template Cancellation Criteria
	Refer to Setting Up Collection Process Templates.

	Control Central Alert
	Refer to Installation Options - Algorithms.

	Cust Class FT Freeze
	Refer to Setting Up Customer Classes.

	Cust Class Pay Freeze
	Refer to Setting Up Customer Classes.

	Deposit Good Customer
	Refer to Setting Up Deposit Classes.

	Deposit Interest Refund
	Refer to Setting Up Deposit Classes.

	Deposit Recommendation
	Refer to Setting Up Deposit Classes.

	Deposit Refund Criteria
	Refer to Setting Up Deposit Classes.

	Deposit Refund Method
	Refer to Setting Up Deposit Classes.

	Debt Class Cancellation Process Cancellation
	Refer to Setting Up Debt Classes

	Debt Class Severance Process Cancellation
	Refer to Setting Up Debt Classes

	Device Test Result Validation
	Refer to Device Test Type – Component Type.

	Device Test Selection
	Refer to Device Test Selection.

	Device Test Validation
	Refer to Device Test Type – Main.

	Dispatch Group Criteria
	Refer to Field Activity Type.

	Due Date Override Algorithm
	Refer to Setting Up Customer Classes.

	Excessive Reads Auto Cancel
	Refer to Setting Up Bill Segment Types.

	FA Completion Method
	Refer to Setting Up Field Activity Types.

	FT Freeze Method
	Refer to SA Type – Algorithm.

	Geo Type Value Format Rule
	Refer to Geographic Types.

	GL Account Construction
	Refer to Distribution Codes.

	ID Format
	Refer to Identifier Types.

	Initiate Stop SA Algorithm
	Refer to SA Type – Algorithm.

	Interval Profile Creation
	Refer to Setting up Interval Profile Types

	Interval Profile Validation
	Refer to Setting up Interval Profile Types

	LPC Calculation Method
	Refer to SA Type – Main.

	LPC Eligibility Rule
	Refer to Setting Up Customer Classes.

	Match Type Pay Distrib Override
	Refer to Setting Up Match Types.

	Meter Read Estimation
	Refer to Setting Up Trend Areas.

	Meter Read Remark Algorithm
	Refer to Meter Reader Remark

	Notification Download Format
	Refer to Setting Up Notification Download Profiles.

	Overpayment Distribution
	Refer to Setting Up Customer Classes.

	Pay Due Date Calculation
	Refer to Setting Up Customer Classes.

	Pay Plan Broken
	Refer to Setting Up Pay Plan Types.

	Pay Plan Override Arrears
	Refer to Setting Up Debt Classes.

	Pay Service Provider
	Refer to Setting Up Service Providers.

	Payment Distribution
	Refer to Setting Up Customer Classes.

	Payment Segment Type
	Refer to Setting Up Payment Segment Types.

	Pre Bill Completion Method
	Refer to SA Type – Algorithm.

	RC Interval Pricing
	Refer to Setting Up Interval Pricing Rate Components.

	RC Interval Pricing Audit
	Refer to Setting Up Interval Pricing Rate Components.

	RC TOU Pricing
	Refer to Setting Up TOU Mapping Rate Components

	RC TOU Pricing Audit
	Refer to Setting Up TOU Mapping Rate Components

	Rate Component Calculation
	Refer to Rate Component – Main Information.

	Rate Component Step
	Refer to Rate Component – Main Information.

	Rate Component Value
	Refer to Rate Component – Main Information.

	Register Rule
	Refer to Setting Up Register Rules.

	SA Creation
	Refer to SA Type – Algorithm.

	SA/SP Field Work Creation
	Refer to SA Type – Algorithm.

	SA Type Break Payment Arrangement
	Refer to SA Type – Algorithm.

	Service Quantity Rule
	Refer to Setting Up SQ Rules.

	Severance Criteria
	Refer to SA Type – Severance Criteria.

	Severance Event
	Refer to Setting Up Severance Event Types.

	Severance Process Template Cancellation Criteria
	Refer to Setting Up Severance Process Templates.

	Severance Process Post Cancel
	Refer to Setting Up Severance Process Templates.

	Transfer A/R
	Refer to Setting Up Service Providers.

	Workflow Event Activation
	Refer to Setting Up Workflow Event Types.

	Workflow Event Failure
	Refer to Setting Up Workflow Event Types

.

	Workflow Process Criteria
	Refer to Setting Up Workflow Process Profiles.

	Write Off Agency Referral Assignment
	Refer to Setting Up Write Off Event Types (collection agency referrals).

	Write Off Criteria
	Refer to Setting Up Write-off Control.

	Write Off Event
	Refer to Setting Up Write Off Event Types.

	Write Off Large Credit A/P Adjustment
	Refer to Setting Up Write-off Control.

	Write Off Small Amt Write Down
	Refer to Setting Up Write-off Control.

	Write Off Synch
	Refer to Setting Up Write-off Control.

	Write Off Xfer to Active SA
	Refer to Setting Up Write-off Control.

Use the Parameter Types grid to define the types of parameters that algorithms of this type use. The following fields should be defined for each parameter:

· Use Sequence to define the relative position of the Parameter.

· Use Parameter to describe the verbiage that appears adjacent to the parameter on the Algorithm page.

· Indicate whether the parameter is Required. This indicator is used when parameters are defined on algorithms that reference this algorithm type.

Where used

An Algorithm references an Algorithm Type. Refer to Setting Up Algorithms for more information.

Setting Up Algorithms

If you need to introduce a new algorithm, open Admin Menu, A, Algorithm. Refer to The Big Picture Of Algorithms for more information.

[image: image2.png]+ Admin Table - Algorith Monday - Hovember 19, 2001

00Q®6 6| (21 @6

[FveaLLRES Q
Description [Fverage il from previous 12 morihs - fimes 150%

Aigorithm Type ([E]) [pEPRECOM-BA | (. Use average bl amourts to recommend deposit

Algorithm Code

P ~i0. Type Descr [This deposit recommendation algorithm calculates the amourt using the following steps: f’
iy dtamine o avrage il ot over el X morin X = defined il Htry Porio),

f 2 iyt verege ol by ¥ defined mDeroet Wutser =

I -

| p— uasi o1 uassly (@) (=

Worccmeone promiss

o

M [Parameter Sequence |Value

Deposit Mulpler (0-935%) 10[fi50
Bil History Period (Marths) 201z
Mirimum Bl Histoy (Morihs) Ell@

Algorithm

Description of Page

Enter an easily recognizable Algorithm Code and Description of the algorithm.

Reference the Algorithm Type associated with this algorithm. This field is not modifiable if there are parameters linked to the algorithm (defined in the following collection).

Refer to Algorithm Type Versus Algorithm for more information about how an algorithm type controls the type of parameters associated with an algorithm.

Define the Value of each Parameter supplied to the algorithm in the Effective-Dated scroll. Note that the Algorithm Type controls the number and type of parameters.

Where used

Every control table that controls component-driven functions references one or more algorithms. Refer to the description of Algorithm Entity under Setting Up Algorithm Types for a list of all such control tables.

©2004 SPL WorldGroup, Inc. Proprietary and Confidential
 SUBJECT * MERGEFORMAT 1

