CorDaptixTM Defining Workflow and Notification Options
Admin Guide – v1.3.31

Workflow and Notification Options

We use the term “notification” to reference the electronic transactions that you exchange with third parties when:

· They need information about a customer

· They need to change something about a customer

For example, an energy service provider sends a notification to an electric distribution company when a customer elects to use them as their energy provider.

When a notification is received, the system responds by creating a workflow process. The workflow process contains workflow events. These events perform the processing necessary to execute the notification.

Workflow processing is difficult to explain because its flexible design can be used to automate many different types of multi-event processes. For example,

· You can use workflow processing to manage the events associated with the inspection of a new premise.

· You can use workflow processing to manage the events that transpire in a deregulated market when a customer wants to switch energy service providers.

Warning! Setting up the workflow process control tables is as challenging as your organization’s business rules. If you don’t have automated workflow processes, you don’t have to setup anything. If you have sophisticated workflow processing requirements, your setup process will be more challenging.

The topics in this section describe tables that control your automated workflow and notification processing.

Contents

The Big Picture Of Workflow Processing
The Big Picture Of Workflow Events
The Big Picture of Notification Processing
Creating Notification and Workflow Procedures
The Big Picture Of Workflow Processing

Refer to The Lifecycle Of A Workflow Process And Its Events for more information about workflow processes.

The Big Picture Of Workflow Events

This section describes the various types of workflow events and their lifecycle:

Contents

How Are Workflow Events Created?
Executing Workflow Events On Their Trigger Date
Workflow Event Lifecycle
Workflow Event Dependencies & Trigger Date
Workflow Events May Be In Error
Some Workflow Events May Fail
Errors versus Failure
Waiting Events And Their Waiting Process
How Are Workflow Events Canceled?
Workflow Processes Can Have Multiple Branches
How Are Workflow Events Created?

Workflow events may be created as follows:

· The process that uploads notification requests creates a workflow process to implement the notification request. The workflow process has one or more workflow event(s). The number and type of events is controlled by the workflow process template associated with the workflow process. Refer to What Type Of Workflow Process Is Created? for more information about how notification requests cause workflow processes to be created.

· Workflow events will be created when an operator creates an ad hoc workflow process. The number and type of workflow events are controlled by the workflow process template associated with the workflow process.

· An ad hoc workflow event may be created and linked to an existing workflow process by an operator at their discretion.

· The system may be customized to create a workflow process when something noteworthy happens in the system. Refer to System Conditions May Trigger Notification and Workflow for more information.

Bottom line. Most workflow events are created by the system when it creates a workflow process to implement an incoming notification. If you need to create an ad hoc workflow event, you can either create a workflow process using a template that contains the desired event OR link the desired event to an existing workflow process.

For more information about creating ad hoc workflow processes and events, refer to Workflow Process Maintenance.

Executing Workflow Events On Their Trigger Date

When the background process (referred to as WFET) executes a workflow event on its trigger date, it calls the activation algorithm associated with the event’s event type. Because you can add and change activation algorithms at will, the variety of workflow events is infinite.

Refer to Designing Workflow Event Types for more information about activation algorithms.

Workflow Event Lifecycle

The lifecycle of a workflow event is dependent on whether the event has to wait on something before it can complete or fail. For example, an event that creates a field activity has to wait until the field activity is performed before it can be considered complete.

The following diagram shows the possible lifecycle of a workflow event:

[image: image1.wmf]Workflow Event Lifecycle

Normal Event Lifecycle

Error

Pending

Cancelled

Fail

Complete

Waiting Event Lifecycle

Error

Pending

Cancelled

Waiting

Complete

Fail

Workflow Event Lifecycle

Normal Event Lifecycle

Error

Pending

Cancelled

Fail

Complete

Waiting Event Lifecycle

Error

Pending

Cancelled

Waiting

Complete

Fail

The following points explain the lifecycle of workflow events of the normal variety:

· Normal events are initially created in the pending state.

· On a pending event’s trigger date, the workflow event activation process (referred to as WFET) executes the event’s activation algorithm.

· An event’s activation algorithm may cause a pending event to become in error. For example, if an event used to create a field activity can’t find a valid service point, the algorithm could change the status of the event to be in error. A user should correct the cause of the error and then change the event’s status back to pending. The pending event will be processed the next time the activation program runs.

· An event’s activation algorithm may cause a pending event to fail. For example, if an event used to validate a notification detects invalid information (e.g., a incoming notification is missing the customer’s account number), the event will fail.

· A pending event becomes complete when the event’s activity is successful. For example, if an event used to validate a notification determines the notification is valid, the event will complete.

For more information about a workflow event’s trigger date, refer to Workflow Event Dependencies & Trigger Date.

· A pending event will be cancelled automatically by the system if the workflow process is cancelled (a workflow process will be cancelled if an event fails or at the discretion of an operator). A user may cancel an event at will. Refer to How Are Workflow Events Canceled for more information.

The following points explain the lifecycle of workflow events of the waiting variety:

· Waiting events are initially created in the pending state.

· On a pending event’s trigger date, the system executes the event. For example, if an event is used to create a “special read” field activity, on the event’s trigger date, the field activity is created.

· An event’s activation algorithm may cause a pending event to become in error. For example, if an event used to create a field activity can’t find a valid service point, the algorithm could change the status of the event to be in error. A user should correct the cause of the error and then change the event’s status back to pending. The pending event will be processed the next time the activation program runs.

· If the activation algorithm did not cause the event to become in error, the event’s status is changed to waiting while the system waits for the field activity to be performed.

For more information about a workflow event’s trigger date, refer to Workflow Event Dependencies & Trigger Date. For more information about what an event might wait on, refer to Waiting Events And Their Waiting Process.

· A waiting event becomes complete when the system sees that the thing that it’s waiting for is finished.

· A waiting event fails when the system sees that the thing that it’s waiting for didn’t complete successfully. For example, an event that sends a confirmation request to a service provider asking if it’s OK for a customer to switch suppliers would fail if the service provider denies the request.

· A waiting event will be cancelled automatically by the system if the workflow process is cancelled (a workflow process will be cancelled if an event fails or at the discretion of an operator).

· A pending event will be cancelled automatically by the system if the workflow process is cancelled (a workflow process will be cancelled if an event fails or at the discretion of an operator).

Refer to Workflow Processes Can Have Multiple Branches for more information about event transition in a process with multiple branches.

Workflow Event Dependencies & Trigger Date

The trigger date of most workflow events is blank when they are first created. This is because the trigger date can only be set when ALL of the preceding workflow events on which it depends are complete. An example will help explain why this design is necessary. Consider the following example that shows a simple workflow process and its events:

	Event Number
	Workflow Event

	Dependent On Event(s)
	Trigger Date Set To X Days After Completion Of Preceding Events

	10
	Validate new customer notification
	N/A – first event
	0

	20
	Set up new customer and meter
	10
	0

	30
	Send notification confirming new customer
	20
	0

	40
	Send welcome letter
	20
	0

This workflow process is meant to implement the following:

· On the first day, validate the incoming notification (the one that tells us about a new customer).

· If validation is successful, set up the new customer and their meter in the system.

· After the new customer and meter are set up, send a notification to the requester that everything has been set up. Also, send a letter to the customer.

The problem is that you don’t want to execute event 20 until event 10 is complete. This is achieved by indicating event 20 is dependent on event 10. The system will only populate event 20’s trigger date when event 10 is complete. Similarly, you can’t set the trigger dates of events 30 and 40 unit the customer has been set up (event 20). So, when you set up a workflow event, you must indicate the dependent events. If you only want the next event to trigger X days after the completion of earlier events, you can indicate such.

Bottom line. The trigger date of a workflow event is set to the current date plus X days where X is the number of days defined on the workflow event. If this date is not a work day for your organization, the trigger date will be set to the next work day. If the resultant date is the current date (because X is zero), the event will be activated immediately.

Refer to How Are Workflow Events Completed? for information about how these events are executed.

Workflow Events May Be In Error

As explained under Workflow Event Lifecycle, when the background process WFET executes an event’s activation algorithm, this algorithm may cause a pending event to become in error. For example, if an event used to create a field activity can’t find a valid service point, the algorithm could change the status of the event to be in error. A user should correct the cause of the error and then change the event’s status back to pending. The pending event will be processed the next time the activation process runs.

Refer to Errors versus Failure for information to help you differentiate between events that have failed versus those that are in error.

Every workflow event that’s in error appears:

· As a row on the Workflow Event Exception page.

· As an entry in the Workflow Event Errors ToDo list.

The main difference between the ToDo list entry and the exception page is that a workflow event remains on the exception page until it is no longer in error; a workflow event remains on the ToDo list until it is removed by an operator.

Removing entries from a ToDo list without correcting the error. An operator may remove a ToDo list entry without actually fixing the error. If this is done, the system will add another ToDo list entry when the respective ToDo creation process next runs.

Some Workflow Events May Fail

Some workflow events may fail. For example:

· An event that validates an incoming notification may result in failure if the notification contains invalid information.

· An event that asks for the confirmation from a distribution company may fail if the distribution company rejects the request.

Refer to Errors versus Failure for information to help you differentiate between events that have failed versus those that are in error.

The background process that is responsible for activating events (referred to as WFET) is the process that can cause an event to fail (failure can happen during the activation algorithm on the workflow event). When an event fails, the system:

· Updates the workflow process with message number describing the validation problem.

· Sets the status of the event to Failed.
· Cancels the workflow process and its outstanding events.

· Calls the failure algorithm defined on the event’s event type.

It’s important to note that some types of events can’t fail and therefore don’t have a failure algorithm. For example, an event that creates a field activity can’t fail, neither can an event that creates a welcome letter.

Refer to Workflow Processes Can Have Multiple Branches for more information about event failure in a process with multiple branches.

Errors versus Failure

As explained under Workflow Event Lifecycle, an event’s activation algorithm may cause a pending event to become in error or to fail (amongst other things). You control the exact state when you design your workflow event type activation algorithms.

The main differences between these two states is as follows:

· As described under Some Workflow Events May Fail, a failed event causes the entire workflow process to fail (and it cannot be restarted).

· As described under Events May Be In Error, a user can correct the cause of an error event’s error and then change the event’s status back to pending. The pending event will be processed the next time the activation process runs.

You should follow the following guidelines when designing your validation logic in your workflow event activation algorithms:

· If the cause of the problem is correctable by a user, you should set the state of the event to be in error.

· If the cause of the problem is not correctable by a user (e.g., you were interfaced information that cannot be corrected by your users), you should set the state of the event to fail.

Waiting Events And Their Waiting Process

Some events have to wait until something else happens before they can be Completed (or Fail). These types of events exist in the Wait state until the thing they are waiting for happens. For example, consider an event that creates a field activity – it has to wait until the field activity is complete before it can itself Complete.

Every type of event that waits for something else to happen before it completes or fails must have a corresponding background process that monitors the thing on which the event is waiting. We refer to background processes that perform this monitoring as Waiting Processes.

There will be a Waiting Process for every type of event that has to wait for something to happen. The specific background process is defined on the workflow event type. For more information, refer to Designing Workflow Event Types.

The following points describe the responsibilities of a Waiting Process:

· Check on the thing on which the event is waiting. For example,

· An event that creates a field activity has a Waiting Process that checks on the state of the field activity.

· An event that creates a request to confirm a customer’s request to switch suppliers has a Waiting Process that checks if the confirmation is accepted or rejected.

· Change the state of the event to Complete or Fail based on what transpired. For example,

· When the field activity completes, the Waiting event can Complete

· The acceptance or rejection is received, the Waiting event can Complete or Fail

· Detect that the event has been waiting too long and do something. For example, the Waiting Process could:

· Create a worklist (i.e., to do) entry (this might be useful if you need an operator to do something)

· or, create an outgoing notification informing the sender of the incoming notification that something is wrong

· or, Fail / Complete the event (you may be able to automatically assume success or failure if an event waits longer than a predefined limit)

· or, execute the event again and reset the base time on the event (this might be useful if the event initiates an outgoing notification to ask permission from some other service provider – if it waits too long, you could simply create another outgoing notification)

· or, whatever else you can think of developing in the process

The system is supplied with several sample waiting processes. Refer to the Process What’s Ready Processes (look for processes with a name that begins with WAIT) for more information.

How Are Workflow Events Canceled?

The background process that is responsible for activating events (referred to as WFET) automatically cancels workflow events when an event fails.

A pending event will be cancelled automatically by the system if the workflow process is cancelled (a workflow process will be cancelled if an event fails or at the discretion of an operator).

In addition, an operator may cancel a workflow event at will.

An event will be cancelled by the background process that is responsible for activating events (referred to as WFET) when it detects that ALL of its earlier, dependent events are cancelled. This is important to understand if your organization has Workflow Processes With Multiple Branches.

Workflow Processes Can Have Multiple Branches

Using the workflow event dependencies, a workflow process may have multiple branches. There are several reasons why you may want to set up a process to contain multiple branches:

· There may be events that can run in parallel. This is useful if the related tasks take time to execute. For example “Read Meter” and “Send Confirmation and Wait for Response”. Both can be executed in parallel and when either event is successful event 5 will execute. The following is an example of such a workflow process.

[image: image2.wmf]Event 1: Validate NUS Request Type 1921

Event 2: Send Confirmation Letter to Customer

Event 5: Create

adhoc

bill

Event 6: Create new SA Relationship on master SA

Event 5: Create

adhoc

bill

Event 6: Create new SA Relationship on master SA

Event 3: Read meter

Event 3: Read meter

Event 4: Check credit history

Event 4: Check credit history

Both events 3 &

4 need to

succeed for the

next event to

process

In the example above, if event 3 is canceled and event 4 completes, event 5 will proceed. However, if both event 3 and event 4 are canceled, all remaining events will be canceled. It should be noted that if an event fails, ALL events in the process will be canceled, including events in a different branch.

[image: image3.wmf]Event 1: Validate NUS Request Type 1921

Event 2: Send Confirmation Letter to Customer

Event 5: Create

 adhoc

 bill

Event 6: Create new SA Relationship on master SA

Event 3: Read meter

Event 4: Check credit history

· You may have a business process that has some common events and some events that are mutually exclusive. Rather than setting up several processes, you can set up one process that branches based on specific criteria. For example, perhaps you get to a certain point in a process that differs based on whether or not a meter is installed. If there is a meter, you follow one branch and if there is no meter, you follow a different branch.

[image: image4.wmf]Event 1: Validate NUS Request Type 1921

Event 2: Determine if Customer exists in system

Templates can be

set up with mutually

exclusive branches

Event 5: Start Service for Premise

Event 4: Create Customer

Event 6: Create SAR

Event 3: Determine Which Branch

Event 5: Start Service for Premise

Event 4: Create Customer

Event 6: Create SAR

Event 3: Determine Which Branch

Event 8: Send Conf. Letter to Customer

Event 9: Read Meter

Event 10: Create SAR

Event 7: Determine Which Branch

Event 8: Send Conf. Letter to Customer

Event 9: Read Meter

Event 10: Create SAR

Event 7: Determine Which Branch

Event 2’s algorithm determines which branch to

continue and sets an appropriate context value

In the above example, event 2 determines if the workflow process is associated with an existing customer or a new customer.

· For a new customer; events 3, 4, 5 and 6 are executed.

· For an existing customer, events 7, 8, 9 and 10 are executed.

Event 2 does this by creating an entry in the Context collection indicating which branch should continue. (For example Context Type / Value of BRANCH / A). Events 3 and 7 should be special events whose purpose is to read the BRANCH context type and determine if its branch should continue or be canceled.

In this example, Event 3’s algorithm will continue if the context value for BRANCH is A and Event 7 will only continue if the context value for BRANCH is B.

[image: image5.wmf]Event 1: Validate NUS Request Type 1921

Event 2: Determine if Customer exists in system

Event 5: Start Service for Premise

Event 4: Create Customer

Event 6: Create SAR

Event 3: Determine Which Branch

Event 5: Start Service for Premise

Event 4: Create Customer

Event 6: Create SAR

Event 3: Determine Which Branch

Event 8: Send Conf. Letter to Customer

Event 9: Read Meter

Event 10: Create SAR

Event 7: Determine Which Branch

Event 8: Send Conf. Letter to Customer

Event 9: Read Meter

Event 10: Create SAR

Event 7: Determine Which Branch

Events 3&7’s algorithm reads the context value

and either completes or cancels itself

Events 3&7’s algorithm reads the context value

and either completes or cancels itself

The Big Picture of Notification Processing

We use the term “notification” to reference the electronic transactions that you exchange with third parties when:

· They need information about a customer.

· They need to change something about a customer.

For example, an electric service provider may send a notification to an electric distribution company when a customer elects to use them as their energy provider.

You may have to support a wide variety of notifications. For example:

· You may receive a notification that tells you to switch a customer’s energy service provider to a different provider (if you are a distribution company).

· You may receive a notification that asks for the last 24 months of consumption history for a customer (if you maintain consumption).

· Etc.

[image: image6.wmf]Change Acct 1’s

ESP to

Retailer A

Switch customer to

an interval meter

Terminate

customer

When a notification is received, the system responds by creating a workflow process. The related workflow process contains workflow events and it is the events that actually do whatever needs to be done (e.g., change the customer’s service provider, create field activities, stop service, etc.).

In addition to incoming notifications, the system creates outgoing notifications when:

· It needs to respond to an incoming notification. For example, if an incoming notification requests a customer’s consumption history, the system must send the consumption history by creating an outgoing notification.

· It needs to apprise a third party that something has changed about the customer. For example, if a customer stops service, the system must tell the various service providers of such.

The topics in this section describe how notifications are interfaced into and out of the system.

Contents

Uploading Notifications Into The System
What Type Of Workflow Process Is Created?
How Are Notifications Sent Out Of The System?
System Conditions May Trigger Notification and Workflow
Uploading Notifications Into The System

The following diagram illustrates the steps involved in the uploading of notifications into the system.

[image: image7.wmf]Change acct 1’s

ESP to

Retailer A

When a notification’s electronic transaction is received, it must be inserted into the notification upload staging (NUS) table. Why? Because the system periodically looks for pending records in the NUS table and attempts to create a workflow process to implement the notification’s request.

It’s important to be aware that the events in a workflow process execute the notification request. To help solidify this concept, consider this – the first event in a workflow process typically validates the attributes on the NUS record.

Refer to Notification Upload Background Process for more information about the upload process.

What Type Of Workflow Process Is Created?

Given that you can receive many different types of notifications (e.g., return consumption, switch supplier, stop service), it should make sense that each type of notification upload staging (NUS) record will probably require a different type of workflow process to implement its request. The system uses the NUS record sender’s external ID and a notification upload type to determine the type of workflow process. This works as follows:

· Every external sender references a workflow process profile.

· A workflow process profile defines the type of workflow process template to use to process a given notification upload type.

Different workflow processes for the same type of notification. It’s probably obvious why different notification types result in different workflow processes. You may wonder why different workflow processes would be needed by two senders who submit the same type of notification? The reason is that different senders may have different types of computer systems that handle their notification processing (or no computer system at all). For example, you may have to respond by fax to a sender who doesn’t have a sophisticated computer system, whereas you may send an electronic transaction to a sender who is technically advanced. The system allows you to create different workflow process profiles for each response mechanism (e.g., sophisticated vs. fax). You then associate the appropriate workflow process with each sender.

How Are Notifications Sent Out Of The System?

In addition to processing incoming notifications from third parties, the system also sends notifications to third parties to provide them with information (and to ask them for information). It is also possible to use notifications to send information to other applications within your company.

A Notification Download Staging (NDS) record is created for every notification that is sent to the outside world. NDS records are created by workflow events (i.e., the event’s activation algorithm creates a NDS record). Consider the following examples:

· Many workflow processes exist to process incoming notifications. These processes typically contain workflow events that create NDS records to communicate with service providers. If you look at the workflow processes described under Designing Workflow Process Templates, you will see many such examples.

· When something noteworthy happens, the system may need to tell a third party about it. Or perhaps you have third party software, which contains information from the system and your company needs to keep the information in sync.

Refer to System Conditions May Trigger Notification and Workflow for more information about triggering notification download staging records from within the system.

System Conditions May Trigger Notification and Workflow

There may be many noteworthy occurrences in the system, which should trigger the notification and workflow process.

Some of these occurrences may need to be communicated to an external system. Examples of when this may occur are as follows:

· You use an external software package, which uses information from the system and you need to send a message to this software package when certain attributes of the customer change.

· You need to inform third parties when something changes about a customer. For example, if you are a distribution company, you probably advise a customer’s energy supply company when their meter is changed or when the customer stops. Or if a customer, who has been referred to a collection agency, makes a payment, you will need to inform the agency of the payment.

In many scenarios, you may want more than just a notification to be sent out, but you would also require a workflow process. For example, perhaps when a customer’s mailing address changes, you want to a) send a confirmation letter to the customer’s old address and their new address; b) inform a third party service provider about the change; and c) send the update to an external marketing system. In this case, the act of changing the mailing address could trigger a workflow process, which would perform the above steps.

You may have other scenarios where a noteworthy condition in the system should trigger a workflow process, which does not require a notification to be sent out of the system. For example, perhaps your company follows a sophisticated procedure for starting service, which requires certain events to transpire before other events can occur. You could create a workflow process, which gets triggered upon starting service to handle this sophistication.

Triggering Notification & Workflow from the Application

You and your implementers must determine those noteworthy things that trigger workflow and/or outgoing notifications. For example, you may communicate all meter exchanges and customer address changes to the customer’s various service providers.

Once you have determined these noteworthy things, you must customize the system to trigger the creation of the appropriate notification and workflow records when one of these noteworthy things happens.

If you are interested in finding out more about this topic, please contact the customer service group.

Creating Notification and Workflow Procedures

A workflow process is created by copying the events defined on a workflow process template (a workflow process template contains the standard events).

Workflow processes can be used for any multi-event process. While this section describes how to design workflow processes to support incoming and outgoing notifications, workflow processes can be used for other multi-step processes. For example, you can use a workflow process to manage the steps involved with the installation and inspection of backflow devices at a water service point.

The topics in this section describe how to design and setup the tables that control your notification and workflow processing.

For more information about notification and workflow processing, see The Big Picture Of Workflow Events and The Big Picture Of Notification Processing.

Warning! There are innumerable ways to design your notification and workflow procedures. Some designs will result in easy long-term maintenance, others will result in maintenance headaches. In this section, we provide information to help you understand the ramifications of the various options. Before you set up your production procedures, we encourage you to gain an intuitive understanding of these options by using the system to prototype the alternatives.

Contents

Designing Notification Upload & Workflow Procedures
Designing Notification Downloads
Setting Up Notification and Workflow Procedures
Designing Notification Upload & Workflow Procedures

The topics in this section describe how to design the tables that control your notification upload and workflow processing.

Contents

Designing Workflow Process Profiles
Designing Notification Upload Types
Designing Workflow Process Criteria
Designing Workflow Processes To Process Incoming Notifications
Designing Workflow Processes To Process Incoming Notifications With Bad Sender or Notif
Designing Workflow Process Templates
Designing Workflow Event Types
Designing (External) Senders
Designing Workflow Process Profiles

The following sections describe how to design a workflow process profile. A workflow process profile controls the type of workflow process that will be created to process your incoming notifications. If you plan to use workflow processes outside of the notification upload process, you can skip to Designing Workflow Process Templates.

You associate a workflow process profile with one or more senders. Whenever a notification is received from a sender, the system uses the workflow process profile to determine the type of workflow process to create to implement the notification.

The easiest way to design a workflow process profile is to choose a representative sender and design a workflow process profile for it by filling in the matrices below. After you’ve designed a profile, determine how many other senders can use it. Then design the next sender’s profile and determine who can reuse it. Repeat this process until all your senders have a profile. Once the profiles are designed, you’re ready to set up the workflow control tables.

Refer to The Big Picture Of Notification Processing for more information about how workflow processes are used to implement incoming notifications.

The topics discussed below will gradually complete the following matrix using a simple case-study. We recommend that you use the following matrix as your guide. When the matrix is complete, you’re ready to set up a workflow process profile.

	WF Process Criteria

Notif. Upload Type
	
	

	
	
	

	
	
	

	
	
	

Designing Notification Upload Types

You will need one notification upload type for every type of notification your organization can receive from the various service providers. To “design” your notification upload types, you document the codes used by senders to identify the transaction types on their notification upload staging records.

We have populated the Notification Upload Type column with a few classic examples that can be received by a distribution company:

	WF Process Criteria

Notif. Upload Type
	
	

	Retrieve a customer’s consumption history
	
	

	Switch a customer to a different service supplier
	
	

	Switch customer to an interval meter
	
	

Note. The unique identifier of your Notification Upload Types should exactly match the “transaction types” that are referenced on incoming notifications.

Designing Workflow Process Criteria

The matrix’s second dimension is dependent on workflow criteria algorithms. Workflow criteria are confusing. Think of them as optional conditions that, if met, will cause a different type of workflow process to be started when a given notification upload type is received.

You must define a Default criteria in case none of the override criteria are met. You MAY have override criteria if different situations result in different types of workflow processes. For example, let’s assume some notification upload types have different workflow processes for industrial customers as compared to all other types of customer. This assumption necessitates the introduction of an override workflow process criteria; we’ll call it Industrial Customer.

	WF Process Criteria

Notif. Upload Type
	Default
	Industrial Customer

	Retrieve a customer’s consumption history
	
	

	Switch a customer to a different service supplier
	
	

	Switch customer to an interval meter
	
	

The workflow process criteria are limited by your imagination (and business requirements). We have provided the workflow process criteria you see above as an example; we don’t expect you’ll be able to use the exact conditions we supply. Your conditions will be based on any number of factors.

New workflow process criteria may require programming. See How To Add A New Algorithm for more information.

Designing Workflow Processes To Process Incoming Notifications

The next step involves populating each cell in the matrix with the workflow events that should be executed when the system receives a notification identified with a given notification upload type. If override criteria aren’t relevant for a given notification upload type, we will mark the cell as “N/A”.

	WF Process Criteria

Notif. Upload Type
	Default
	Industrial Customer

	Retrieve a customer’s consumption history
	Validate notification - consumption history request

Confirm requester is a valid service provider for the customer’s service.

Create notification download – send consumption history
	N/A (meaning that industrial customers use the Default criteria)

	Switch a customer to a different service supplier
	Validate notification – supplier switch

Confirm requester is a valid service provider for the customer’s service.

Check with current supplier if the switch is allowed.

Switch suppliers.
	N/A (meaning that industrial customers use the Default criteria)

	Switch customer to an interval meter
	Validate notification – change customer to an interval meter

Create notification download – reject request (only industrial customers can have an interval meter)
	Validate notification – change customer to an interval meter

Confirm requester is a valid service provider for the customer’s service.

Create field activity to exchange current meter.

Change rate on exchange date.

Note. Notice that the first event in each cell typically validates the notification upload staging record.

At this point, the matrix is complete. Before you’re ready to design your workflow process templates you must design the processes described in the next section.

Designing Workflow Processes To Process Incoming Notifications With Bad Sender or Notification Upload Type

The system needs to know the type of workflow process to create when a notification is uploaded that does not contain a valid External (Sender) ID or Notification Upload Type (these two fields are the ones that control the type of workflow process that's created to process the uploaded notification). When these conditions are detected by the notification upload process, most utilities create an outgoing notification rejecting the uploaded notification when such conditions transpire. We’ve shown these in the following table.

	Notification Condition
	Workflow Process Events

	Unknown Notification (Sender) ID
	Create notification download – reject notification, bad sender ID

	Unknown Notification (Upload) Type
	Create notification download – reject notification, bad notification upload type

These processes are not in a workflow process profile. The above workflow process templates are not referenced in a workflow process profile. Rather, when you create these workflow process templates you label them with a Notification Condition of Unknown Notification ID or Unknown Notification Type. The notification upload process will then create workflow process when these events transpire.

Designing Workflow Process Templates

The following table shows the workflow process templates referenced in the previous section’s matrix. Adjacent to each process is its events and an indication of when they are triggered.

	Workflow Process Template
	Event Number

	Workflow Event
Type

	Dependent On Event(s)

	Trigger Date Set To X Days After Completion Of Dependent Events

	Retrieve a customer’s consumption
	10
	Validate notification – consumption history request
	N/A – first event
	0

	
	20
	Confirm requester is a valid service provider for the customer’s service
	10
	0

	
	30
	Create notification download – send consumption history
	20
	0

	Switch a customer to a different service supplier
	10
	Validate notification – supplier switch
	N/A – first event
	0

	
	20
	Confirm requester is a valid service provider for the customer’s service
	10
	0

	
	30
	Check with current supplier if the switch is allowed
	20
	0

	
	40
	Switch suppliers
	30
	0

	Switch customer to an interval meter
	10
	Validate notification – interval meter switch
	N/A – first event
	0

	
	20
	Confirm requester is a valid service provider for the customer’s service
	10
	0

	
	30
	Create field activity to exchange current meter
	20
	0

	
	40
	Change rate on exchange date
	30
	0

	Reject interval meter switch
	10
	Validate notification – interval meter switch
	N/A – first event
	0

	
	20
	Create notification download – reject request
	10
	0

	Reject bad notification upload type
	10
	Create notification download – reject request
	N/A – first event
	0

	Reject bad sender
	10
	Create notification download – reject request
	N/A – first event
	0

Designing Workflow Event Types

If we extract each unique event type from the above table, we end up with the following:

	Workflow Event Type

	Validate notification – consumption history request

	Confirm requester is a valid service provider for the customer’s service

	Create notification download – send consumption history

	Validate notification – supplier switch

	Current supplier confirmation

	Switch supplier

	Validate notification – interval meter switch

	Create field activity to exchange meter

	Change rate

	Create notification download – reject request

Next, we have to determine the algorithm that will be used when each event is activated on its trigger date. We call this algorithm the activation algorithm. An activation algorithm is a stand-alone routine that does whatever you need done when an event is activated. We have populated the following table with brief descriptions of the types of activation algorithms you’d need for the above workflow events.

The activation algorithms are limited by your imagination (and business requirements). We have provided the activation algorithms you see below as an example; we don’t expect you’ll be able to use the exact algorithms that we supply. Your algorithms will be based on any number of factors. Be aware that new activation algorithms may require programming. See How To Add A New Algorithm for more information.

	Workflow Event Type
	Activation Algorithm

	Validate notification – consumption history request
	Validate consumption history request

	Confirm requester is a valid service provider for the customer’s service
	Confirm service provider is valid requester

	Create notification download – send consumption history
	Create notification download – send consumption history

	Validate notification – supplier switch
	Validate supplier switch request

	Current supplier confirmation
	Create notification download – check if it’s OK to switch customer from current supplier

	Switch supplier
	Switch supplier

	Validate notification – interval meter switch
	Validate interval meter switch request

	Create field activity to exchange meter
	Create field activity – exchange meter

	Change rate
	Change rate

	Create notification download – reject request
	Create notification download – reject request

Next, we have to determine which types of events can fail. Refer to Some Workflow Events May Fail for background information failure. For those types of events that can fail, we will indicate their failure algorithm in the table. A failure algorithm is a stand-alone routine that does whatever you need none when an event fails. We have populated the following table with brief descriptions of the types of failure algorithms you’d need for the above workflow events.

The failure algorithms are limited by your imagination (and business requirements). We have provided the failure algorithms you see below as an example; we don’t expect you’ll be able to use the exact algorithms that we supply. Your algorithms will be based on any number of factors. Be aware that new failure algorithms may require programming. See How To Add A New Algorithm for more information.

	Workflow Event Type
	Activation Algorithm
	Failure Algorithm

	Validate notification – consumption history request
	Validate consumption history request
	Create notification download – invalid request

	Confirm requester is a valid service provider for the customer’s service
	Confirm service provider is valid requester
	Create notification download – invalid requester

	Create notification download – send consumption history
	Create notification download – send consumption history
	N/A

	Validate notification – supplier switch
	Validate supplier switch request
	Create notification download – invalid request

	Current supplier confirmation
	Create notification download – check if it’s OK to switch customer from current supplier
	Create notification download – reject request due to supplier rejection

	Switch supplier
	Switch supplier
	N/A

	Validate notification – interval meter switch
	Validate interval meter switch request
	Create notification download – invalid request

	Create field activity to exchange meter
	Create field activity – exchange meter
	N/A

	Change rate
	Change rate
	N/A

	Create notification download – reject request
	Create notification download – reject request
	N/A

And finally, for those events whose activation algorithm puts them into a wait state, we have to determine the waiting process that monitors the waiting events. Refer to Waiting Events And Their Waiting Process for more information about waiting.

The waiting processes are limited by your imagination (and business requirements). We have provided the waiting processes you see below as an example; you may not be able to use the exact processes that we supply as your processes will be based on any number of factors. Be aware that a new waiting process will require programming.

	Workflow Event Type
	Activation Algorithm
	Failure Algorithm
	Waiting Process

	Validate notification – consumption history request
	Validate consumption history request
	Create notification download – invalid request
	N/A

	Confirm requester is a valid service provider for the customer’s service
	Confirm service provider is valid requester
	Create notification download – invalid requester
	N/A

	Create notification download – send consumption history
	Create notification download – send consumption history
	N/A
	N/A

	Validate notification – supplier switch
	Validate supplier switch request
	Create notification download – invalid request
	N/A

	Current supplier confirmation
	Create notification download – check if it’s OK to switch customer from current supplier
	Create notification download – reject request due to supplier rejection
	Check if supplier has accepted process

	Switch supplier
	Switch supplier
	N/A
	N/A

	Validate notification – interval meter switch
	Validate interval meter switch request
	Create notification download – invalid request
	N/A

	Create field activity to exchange meter
	Create field activity – exchange meter
	N/A
	Check if field activity is complete

	Change rate
	Change rate
	N/A
	N/A

	Create notification download – reject request
	Create notification download – reject request
	N/A
	N/A

Designing (External) Senders

As described under What Type Of Workflow Process Is Created?, every notification upload staging (NUS) record contains an external sender ID. An external sender ID is the unique identifier of the sender of the notification.

To “design” your external senders, document the external id’s (e.g., DUNS number) of your service providers. The following table contains a sample:

	External Sender ID
	Description

	102910
	Energy Supplier, Inc.

	392191
	Cheap Power, Inc.

The above example would result in 2 external senders – 102910 and 392191.

Note. It’s obvious, but worth stressing, that the External Sender ID should be the exact number referenced on notifications sent by a sender.

Designing Notification Downloads

The system creates outgoing notifications when:

· It needs to respond to an incoming notification. For example, if an incoming notification requests a customer’s consumption history, the system must send the consumption history by creating an outgoing notification.

· It needs to apprise a third party that something has changed about the customer or their meter. For example, if a customer stops service, the system must tell the various service providers of such.

· It needs to exchange information with another application in the company, for example a CRM system.

A Notification Download Staging (NDS) record is created for every notification that is sent to the outside world. NDS records are created by workflow events (i.e., the event’s activation algorithm creates a NDS record).

The topics in this section describe how to design the tables that control your notification download processing.

Contents

Designing Workflow Processes To Support Outgoing Notifications
Designing Notification Download Types
Designing Notification Download Profiles
Designing Workflow Processes To Support Outgoing Notifications

As described under How Are Notifications Sent Out Of The System? notifications are sent out via Notification Download Staging (NDS) records. NDS records are created by workflow events (i.e., the event’s activation algorithm creates notification download records). There are two types of workflow processes that contain these types of workflow events:

· Many workflow processes exist to process incoming notifications. These processes typically contain workflow events that create NDS records to communicate with service providers. If you look at the workflow processes described under Designing Workflow Process Templates, you will see many such examples.

· When something noteworthy happens, the system may need to tell a third party about it. For example, if you are a distribution company, you probably advise a customer’s energy supply company when their meter is changed or when the customer stops. Rather than create NDS records when something noteworthy happens, it is recommended that the system is configured to create a notification upload staging record, which will create a workflow process. The workflow process, in turn, contains a workflow event (or events) that create the NDS records. The following table shows representative workflow process templates of this type.

	Workflow Process Template
	Event Number

	Workflow Event
Type

	Dependent On Event(s)

	Trigger Date Set To X Days After Completion Of Dependent Events

	Stop service
	10
	Create notification download – inform all parties that customer is stopping service
	N/A – first event
	0

	Meter exchange
	10
	Create notification download – inform all parties that meter has been changed
	N/A – first event
	0

After documenting these types of workflow process templates, follow the instructions under Designing Workflow Event Types to add any new types of events to the list.

Designing Notification Download Types

You will need one notification download type for every type of notification your organization can send to service providers. To “design” your notification download types, list:

· Every outgoing notification that you documented under Designing Workflow Event Types.

· Every outgoing notification that you documented under Designing Workflow Processes To Support Outgoing Notifications.

We have populated the Notification Download Type column with a few classic examples:

	Notif. Download Type

	Inform all parties that customer is stopping service

	Inform all parties that meter has been changed

	Send consumption history

	Check if it’s OK to switch customer from current supplier

	Reject request

Once you know the different types of download notifications, you have to determine the physical method used to route the notification to the third party. Refer to Designing Notification Download Profiles for how to do this.

Designing Notification Download Profiles

A notification download profile controls how the system routes notifications to third parties. You associate a notification download profile with one or more service providers. Whenever a notification is sent to a service provider, the system uses the notification download profile to determine the interface method and the format of notifications.

A notification download profile corresponds with a protocol used to route notifications to service providers. If you electronically route all notifications using the same protocol (i.e., record format and routing method), you will have a single notification download profile. If you have to route notifications using different protocols to different providers, you will need one notification download profile per protocol.

Using the notification download profile, you can define which outgoing messages are sent as an XML document via the XAI tool and which are sent in batch format. When a message is designated as being sent via the XAI tool, then you must define XAI routing information. If a message is designated as being sent via batch, then you must indicate the formatting algorithm used by the extract program.

The easiest way to design a notification download profile is to choose a representative service provider and design a notification download profile for it by filling in the following matrix. After you’ve designed a profile, determine how many other service providers can use it. Then design the next service provider’s profile and determine who can reuse it. Repeat this process until all your service providers have a profile. Once the profiles are designed, you’re ready to set up the control tables.

	Background Process used for batch messages
	Notification Download Type
	Processing Method
	XAI Route Type
	Format Method

	File Transfer
	Inform all parties that customer is stopping service
	Batch
	
	Format Stop

	
	Inform all parties that meter has been changed
	XAI
	XML type 5674
	

	
	Send consumption history
	Batch
	
	Format Consumption

	
	Check if it’s OK to switch customer from current supplier
	XAI
	XML type 865
	

	
	Reject request
	XAI
	XML type 3245
	

Notice that you define the background process at the profile level, but you indicate for each download type whether it will be processed by that background process or via XAI.

After you’ve designed notification download profiles to cover every protocol, you are ready to set up the control tables.

Refer to Notification Download Background Processes for more information.

Setting Up Notification and Workflow Procedures

In the previous sections, Designing Notification Upload & Workflow Procedures and Designing Notification Downloads, we presented a case study that illustrated a mythical organization’s workflow procedures. In this section, we’ll explain how to set up the control tables to implement these procedures.

Contents

Setting Up Workflow Event Types
Setting Up Workflow Process Templates
Setting Up Notif Upload Types
Setting Up Notif External (Sender) ID’s
Setting Up Workflow Process Profiles
Setting Up Notif Download Types
Setting Up Notif Download Profiles
Setting Up Workflow Event Types

Workflow event types control what is done by a given workflow event. Open Admin Menu, Workflow Event Type to define your workflow event types.

Refer to Designing Workflow Event Types for more information.

[image: image8.png]
Workflow Event Types

Description of Page

Enter a unique Workflow Event Type and Description for the event type.

Turn on Allow Manual Completion if an operator is allowed to change the status of workflow events of this type to Complete.

The Event Activation Algorithm is used by the system when it activates a workflow event of this type. Refer to Executing Workflow Events On Their Trigger Date and Designing Workflow Event Types for more information. If you haven’t done so already, you must set up this algorithm in the system. To do this:

· Create a new algorithm (refer to Setting Up Algorithms).

· On this algorithm, reference an Algorithm Type that is associated with workflow event activation. The system comes supplied with several sample algorithm types that should be used as a sample if you have to write a new algorithm type. Refer to Setting Up Algorithm Types for how this type of algorithm operates.

The Event Failure Algorithm is used by the system when a workflow event of this type fails. This algorithm need only be defined if events of this type can fail. Refer to Some Workflow Events May Fail and Designing Workflow Event Types for more information. If you haven’t done so already, you must set up this algorithm in the system. To do this:

· Create a new algorithm (refer to Setting Up Algorithms).

· On this algorithm, reference an Algorithm Type that is associated with workflow event failure. The system comes supplied with several sample algorithm types that should be used as a sample if you have to write a new algorithm type. Refer to Setting Up Algorithm Types for how this type of algorithm operates.

The Wait Process is the background process responsible for monitoring workflow events of this type that are in the Waiting state. Refer to Waiting Events And Their Waiting Process for more information.

Where used

A Workflow Process Template references one or more workflow event types. Refer to Setting Up Workflow Process Templates for more information.

A Workflow Event references a workflow event type. Refer to Workflow Process – Events for more information.

Setting Up Workflow Process Templates

A workflow process template defines the workflow events that will be created when a workflow process is created using a template. Open Admin Menu, Workflow Process Template to define your workflow process templates.

Refer to Designing Workflow Process Templates for more information.

[image: image9.png]
Workflow Process Template

Description of Page

Enter a unique Workflow Process Template code and Description for the workflow process template.

When something noteworthy happens, the system may need to tell a customer’s service provider about it. For example, if you are a distribution company, you probably advise a customer’s energy supply company when their meter is changed or when the customer stops. Rather than create notification download staging (NDS) records when something noteworthy happens, the system creates a workflow process. The workflow process, in turn, contains a workflow event (or events) that create the NDS records. Use Notification Condition to define the type of “noteworthy condition” that will trigger the creation of this type of workflow process.

In addition to defining “noteworthy conditions”, the system also needs to know the type of workflow process to create when a notification is uploaded that does not contain a valid External (Sender) ID or Notification Upload Type (these two fields are the ones that control the type of workflow process that's created to process the uploaded notification). If you create workflow process templates and label them with a Notification Condition of Unknown Notification ID or Unknown Notification Type, the notification upload process will create a respective workflow process when either of the above conditions are discovered. Note: most utilities create an outgoing notification rejecting the uploaded notification when such conditions transpire.

Use Comments to describe the workflow process template.

When a workflow process is created, the system links one or more workflow events to it. The information in the Workflow Responses scroll defines these events and when they will be triggered. To modify a response, simply move to a field and change its value. To add a new response, press + to insert a row, then fill in the information for each field. The following fields are required for each event:

Event Sequence
Sequence controls the order in which the workflow events are executed. The sequence number is system-assigned and cannot be changed. If you have to insert a workflow event between two existing events, you’ll have to remove the latter events, insert the new event, and then re-specify the removed events.

Workflow Event Type
Specify the type of workflow event to be generated. The event type’s description is displayed adjacent.

Dependent on Other Events
Turn this indicator on if the trigger date of the event can only be determined after earlier events are complete. Refer to Workflow Event Dependencies & Trigger Date for more information. If this switch is on, you must define the events on which this response depends in the Dependent on Other Events grid.

Days After Previous Response
Specify the number of days after the completion of the dependent events on which the workflow event will be triggered. If this event is not dependent on the completion of other events, this field contains the number of days after the creation of the workflow process that the related workflow event will be triggered.

When the Dependent on Other Events switch is on, a grid appears in which you specify the events on which this event is dependent. To modify a dependent event, simply move to a field and change its value. To add a new dependent event, press + to insert a row, then fill in the information for each field. The following fields are required for each event:

Sequence
Sequence is system-assigned and cannot be specified or changed.

Dependent on Sequence
Specify the sequence number of the workflow event type on which the above workflow event depends.

Workflow Event Type
The system displays the ID of dependent workflow event in this column.

For more information about workflow event templates, see Setting Up Workflow Event Types. For more information about trigger dates, see Workflow Event Dependencies & Trigger Date.

Where used

A Workflow Process Profile references one or more workflow process templates. Refer to Setting Up Workflow Process Profiles for more information.

A Workflow Process references a workflow process template. Refer to Workflow Process – Main for more information.

Setting Up Notif Upload Types

Every notification upload staging record has a notification upload type. This code is one of several fields that control the type of workflow process used to process the incoming notification. Open Admin Menu, Notification Upload Type to define your notification upload types.

Refer to Designing Notification Upload Types for more information.

[image: image10.png]
Notification Upload Types

Description of Page

To modify a notification upload type, simply move to a field and change its value.

To add a new notification upload type, press + to insert a row, then fill in the information for each field. The following fields display:

Upload Type
The unique identifier of the notification upload type.

Description
The description of the notification upload type.

Upload Condition Flag
This flag is available for use when a system condition should trigger the creation of a notification record. Refer to System Conditions May Trigger Notification and Workflow for more information.

Note. The values for this field are customizable using the Lookup table. The values need to match the formats supported by your bill print software. This field name is NT_UP_TY_COND_FLG.

Where used

A Notification Upload Staging record must reference a notification upload type. Refer to Process X – Populate Notification Upload Staging for more information.

A Workflow Process Profile references one or more notification upload types. Refer to Setting Up Workflow Process Profiles for more information.

Setting Up Notif External (Sender) ID’s

Every notification upload staging record references its sender. The sender ID is one of several fields that control the type of workflow process used to process the incoming notification. Open Admin Menu, Notification External ID to define your senders.

Refer to Designing (External) Senders for more information.

[image: image11.png]
Notification External (Sender) ID’s

Description of Page

To modify a notification external (sender) ID, simply move to a field and change its value.

To add a new sender, press + to insert a row, then fill in the information for each field. The following fields display:

Notification External ID
The unique identifier of a sender of a notification.

Our Name In Their System
The identity of your organization (i.e., your sender ID) in the sender’s system.

W/F Process Profile
Whenever a notification is uploaded, the system creates a workflow process to process each notification. The type of workflow process that’s created is controlled by the sender’s W/F (Workflow) Process Profile. Refer to Designing Notification Upload & Workflow Procedures for more information.

Description
The description of the sender.

Where used

A Notification Upload Staging record must reference a sender. Refer to Process X – Populate Notification Upload Staging for more information.

If you send notifications to a service provider, the service provider must reference the external ID used to identify the service provider on notification download records. Refer to Setting Up Service Providers for more information.

Setting Up Workflow Process Profiles

The system uses a workflow process profile to determine the type of workflow process to create for incoming notifications sent by the service provider. A workflow process profile is associated with one or more service providers. Open Admin Menu, Workflow Process Profile to define your workflow process profiles.

Refer to Designing Workflow Process Profiles for more information.

[image: image12.png]
Workflow Process Profile

Description of Page

Define a unique ID and Description for each workflow Process Profile.

The information in the grid defines the type of workflow process that will be created for each Notification Upload Type. The type of workflow process may differ depending on special criteria. For example, you may have a different workflow process if the customer is industrial (as compared to commercial and residential). You must define a Default criteria in case none of the override criteria are met (the Default criteria should have the lowest priority). You MAY have override criteria if different situations result in different types of workflow processes.

The following information is not intuitively obvious. Refer to Designing Workflow Process Criteria for more information.

To modify this information simply move to a field and change its value. To add new criteria, press + to insert a row, then fill in the information for each field. The following fields are required for each criteria:

Priority
The priority controls the order in which the system determines if the respective workflow process should be used to process notifications of a given type. Higher priorities are checked before lower priorities.

Note. The values for this field are customizable using the Lookup table. This field name is CRIT_PRIO_FLG. Be aware that this field is used for multiple tables: Collection Class Control, Severance Criteria, Write Off Control and Workflow Process Profiles.

Criteria Algorithm
Select the algorithm to be used to check if the workflow process should be initiated for notifications of a given type. If a condition is met, a workflow process is created using the associated workflow process template.

If you haven’t done so already, you must set up this algorithm in the system. To do this:

· Create a new algorithm (refer to Setting Up Algorithms).

· On this algorithm, reference an Algorithm Type that determines if an incoming notification should be processed using the associated Workflow Process Template. The system comes supplied with a sample algorithm type called that should be used as a sample if you have to write a new algorithm type. Refer to Setting Up Algorithm Types for how this type of algorithm operates.

Important! You must have at least one entry in this collection otherwise the system will not start a workflow process when an incoming notification of this type is received. This entry should have the lowest priority code and should reference a Criteria Algorithm that references the default workflow criteria algorithm type.

Workflow Process Template
Specify the workflow process template to use to process incoming notifications identified with the Notification Upload Type.

Where used

Every service provider references a workflow process profile. The workflow process profile is used to determine the type of workflow process to create for incoming notifications sent by the service provider. Refer to Service Provider - Main for more information.

Setting Up Notif Download Types

Every notification download staging record has a notification download type. This code controls the format of the record that is sent to a service provider. Open Admin Menu, Notification Download Type to define your notification download types.

Refer to Designing Notification Download Types for more information.

Contents

Notification Download Type - Main
Notification Download Type - Context
Notification Download Type - Main

Every notification download staging record has a notification download type. This code controls the format of the record that is sent to a service provider. Open Admin Menu, Notification Download Type to define your notification download types.

[image: image13.png]
Notification Download Type - Main

Description of Page

To modify a notification download type, simply move to a field and change its value.

To add a new notification download type, press + to insert a row, then fill in the information for each field. The following fields display:

Notification Download Type
The unique identifier of the notification download type.

Description
The description of the notification download type.

XAI Service ID
The ID of the XAI Service that will be called for this NDS Type if the download profile formatting method indicates that this download type will be processed by XAI.
Download Type Condition Flag
This flag is available for use when a system condition should trigger the creation of a notification record. Refer to System Conditions May Trigger Notification and Workflow for more information.

Note. The values for this field are customizable using the Lookup table. The values need to match the formats supported by your bill print software. This field name is NT_DWN_TY_COND_FLG.

Notification Download Type - Context

Every notification download staging record has a notification download type. This code controls the format of the record that is sent to a service provider. Open Admin Menu, Notification Download Type to define your notification download types.

[image: image14.png]
Notification Download Type - Context

Description of Page

Use the arrows to scroll to the desired download type.

The context collection functionality allows you to define a collection of Context Types that should be defined for a notification download staging record of this type. When the NDS record is created, with its collection of these Context Types, the Context Values would correspond to system data related to this NDS record. In addition, the Context Type and Value combination is available to you for use as needed.

The Context Value Long is used by XAI NDS Types. For each context type, use the Context Value Long to indicate the relative path in the XML document where the field value will be placed when building the XML document.

Where used

A Notification Download Staging record must reference a notification download type. Refer to Process X – Populate Notification Upload Staging for more information.

A Notification Download Profile references one or more notification download types. Refer to Setting Up Notification Download Profiles for more information.

Setting Up Notif Download Profiles

A notification download profile controls how the system routes notifications to service providers. You associate a notification download profile with one or more service providers. Whenever a notification is sent to a service provider, the system uses the notification download profile to determine the interface method and the format of notifications.

Open Admin Menu, Notification Download Profile to define your notification download profiles.

Refer to Designing Notification Download Profiles for more information.

[image: image15.png]
Notification Download Profile

Description of Page

Define a unique ID and Description for each Download Profile.

Use NDS Extract Process to define the background process that creates notification download records and interfaces them out of the system.

The information in the scroll controls how the Extract Process formats an interface record for each Notification Download Type. In addition to defining a Description and Comments, you must define the Processing Method. The valid values are XAI and Batch.

If your processing method is Batch, you need to define the Notification Format Algorithm that actually formats the interface record. If you haven’t done so already, you must set up this algorithm in the system. To do this:

· Create a new algorithm (refer to Setting Up Algorithms).

· On this algorithm, reference an Algorithm Type that is associated with workflow event failure. The system comes supplied with several sample algorithm types that should be used as a sample if you have to write a new algorithm type. Refer to Setting Up Algorithm Types for how this type of algorithm operates.

If your processing method is XAI, you need to define the collection of XAI Route Types. The XAI Route Type describes how the message should be formatted and the destination of the message. Refer to XAI Route Type for more information.

Where used

A service provider references a notification download profile. Refer to Service Provider - Main for more information.

5
©2004 SPL WorldGroup, Inc. Proprietary and Confidential
 SUBJECT * MERGEFORMAT 1

