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ABSTRACT

Among U.S. households, a quarter have smart meters but only one percent are
on any form of dynamic pricing. Commissions and utilities continue to study the
potential benefits of dynamic pricing through experimentation but most of it in-
volves the residential sector. We add to that body of knowledge by presenting the
results of a pilot in Connecticut which included small commercial and industrial
(C&I) customers in addition to residential customers. The pilot featured a time-
of-use rate, two dynamic pricing rates and four enabling technologies. Customers
were randomly selected and allocated to these rates, to ensure representativeness
of the final results. The experiment included a total of around 2,200 customers
and ran during the summer of 2009. Using a constant elasticity of substitution
model, we find that customers do respond to dynamic pricing, a finding that
matches that from most other experiments. We also find that response to critical-
peak pricing rates is higher than response to peak-time rebates, unlike some other
experiments where similar results were found. Like many other pilots, we find
that there is virtually no response to TOU rates with an eight hour peak period.
And like the few pilots that have compared small C&I customer response to
residential response, we find that small C&I customers are less price responsive
than residential customers. We also find that some enabling technologies boost
price responsiveness but that the Energy Orb does not.

Keywords: Dynamic Pricing, Impact Evaluation, Time-of-Use Rates, Critical-
Peak Pricing, Peak Time Rebates, Enabling Technologies, Residential
Customers, Small Commercial and Industrial (C&I) Customers, Elasticity of
Substitution

http://dx.doi.org/10.5547/01956574.35.1.8

1. INTRODUCTION

1.1 Overview of the Issues

Electricity cannot be stored economically in large quantities, and has to be consumed
instantly on demand. The load duration curve for most utility systems is very peaky, with some
eight to eighteen percent of annual peak load being concentrated in the top one percent of the hours
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1. For a survey, see Crew, Fernando and Kleindorfer (1995). A case for dynamic (as opposed to static) time-varying
rates was provided by Vickrey (1971). Chao (1983) introduced uncertainty into the analysis. Littlechild (2003) considered
the consequences of passing through wholesale costs to retail customers. Borenstein (2005) compared the efficiency gains
of dynamic and static time-varying rates.

2. Faruqui (2010) discusses the ethics of cross-subsidies.
3. A framework for carrying out a cost-benefit analysis is illustrated with four hypothetical case studies in Faruqui et

al. (2011). Additional details on how to assess the benefits of dynamic pricing can be found in Faruqui and Wood (2008).
4. Wolak (2011) discusses the D.C. pilot, Allcott (2011) discusses the Illinois pilot, Faruqui and Sergici (2011) discuss

the Maryland pilot, Faruqui, Sergici and Akaba (2012) discuss the Michigan pilot, and Faruqui, Hanser, Hledik and Palmer
(2010), Newsham and Bowker (2010) and Rowlands and Furst (2011) discuss various pilots that have been carried out in
Ontario, Canada. For a bibliography on dynamic pricing and time-of-use rates, please see Enright and Faruqui (2013).

5. The impact in the mildest zone was estimated at 8 percent versus 17 percent in the strongest climate zone. http://
sites.energetics.com/madri/toolbox/pdfs/pricing/cra_2005_impact_eval_ca_pricing_pilot.pdf. Additional results from this
pilot can be found in Herter (2007) and Herter, McAuliffe and Rosenfield (2007).

of the year. These two factors, taken in conjunction with the time-variation in marginal energy and
capacity costs that characterizes different generation technologies, mean that the optimal way for
pricing electricity is to institute time-varying rates.1 Not only would this increase economic effi-
ciency, it would also eliminate inter-customer cross-subsidies that are embedded in flat rates.2 Of
course, dynamic pricing can only be carried out once smart meters are in place. As of this writing,
about a quarter of U.S. households are on smart meters and the number is projected to rise by the
end of the decade to nearly a hundred percent. However, only one percent of the households are
on any type of time-varying rate and only one percent of that one percent are on any form of
dynamic pricing rate (Federal Energy Regulatory Commission (2012)). Commissions and utilities
continue to study the potential rollout of dynamic pricing. Well-designed experiments in which
customers are randomly placed on different rates provide an important avenue for gaining insights
into the likely impact of those rates.3

1.2 A New Experiment in the New England Region

The extant literature discusses experiments with dynamic pricing that have been carried
out in Australia, Europe, North America and New Zealand during the past decade. However, most
of them have been located in regions with hot and humid summers such as the District of Columbia,
Florida, Illinois, Maryland, Michigan and Oklahoma.4

It is uncertain whether the results observed in these pilots would apply to regions with
milder climates, such as New England, where the saturation of central air conditioning (CAC)
systems is under 30 percent. An earlier experiment, carried out in California in the 2003–04 time
frame, found that customer response in the mildest climate zone (the coastal regions and mountains)
was less than half the size of response in the strongest climate zone (the central valley) (Charles
River Associates (2005)).5

This paper presents an impact evaluation of a dynamic pricing pilot that was carried out
in New England by the Connecticut Light & Power Company (CL&P). Called the Plan-It Wise
Energy Pilot (PWEP), it was designed to test if time-varying pricing could lower future power costs
by curtailing peak demands during critical periods or by shifting them to other periods.

Although other dynamic pricing pilots had published their findings prior to the execution
of the PWEP, they had been carried out in different geographies and it was not clear whether the
results from these pilots would be transferable to New England, given differences in socio-demo-
graphic and climatic conditions (Faruqui and Sergici (2009) and Faruqui and Sergici (2011)). The
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6. Our comparisons across different climates are only qualitative in nature as we do not make an effort to control for
other differences in the pilot designs.

PWEP was intended to provide results that would support the execution of a cost-benefit analysis
of advanced metering infrastructure (AMI).

Unlike other pilots, which only included residential customers, the PWEP also included
small C&I customers. Around 2,200 customers were included in the experiment, equally divided
between the residential and small C&I classes. The pilot featured three rate designs: critical-peak
pricing (CPP), peak-time rebates (PTR) and standard time-of-use (TOU) rates. Low and high values
of each rate design were included in PWEP to allow precise estimation of price elasticities. Each
variant was designed to be revenue neutral for the class as a whole relative to the existing tariffs.
The time-varying rates were also tested with and without enabling technologies. Four types of
technologies were considered in the PWEP: In-Home Displays which show how much electricity
is being used at different times of day and the associated cost, the Energy Orb which changes color
as prices change, a Smart Thermostat that raises the temperature setting as prices rise and a switch
to cycle the compressor unit of central air conditioning systems during critical peak hours.

The pilot ran from June 1, 2009 through September 30, 2009. Ten critical peak days were
called during June, July and August. Hourly usage was recorded for both the treatment and the
control customers during the pilot period to determine if the treatment group used less electricity
during the more expensive periods. In addition, to assess for any pre-existing difference in the
groups, hourly usage was also recorded during a pre-pilot phase. Econometrically, a difference-in-
differences estimation procedure was applied to an unbalanced panel for estimating the treatment
effects.

The PWEP, formulated as a scientific experiment, was designed to test five major hypoth-
eses: (1) Do customers exhibit similar price responsiveness (as measured by elasticities of substi-
tution) to the CPP, PTR and TOU tariffs? (2) Are the enabling technologies employed in the pilot
effective in increasing customers’ price responsiveness? (3) Does dynamic pricing elicit lower
response in a mild climate compared to a warmer climate?6 (4) Do customers respond to longer
peak windows? And (5) Do the residential and small C&I customers respond differently to price
signals?

Section 2 of this paper describes the experimental design of the PWEP. Section 3 sum-
marizes the analytical methods and data used in the estimation of the load impacts. Section 4 reports
on the empirical findings and Section 5 concludes the paper.

2. PWEP EXPERIMENTAL DESIGN

2.1 Rate Design

CL&P’s standard rate is a flat, seasonal, volumetric rate that includes a fixed customer
charge. During the PWEP period, the control group customers paid the standard rate which, on an
all-in basis, amounts to $0.201/kWh for residential customers and $0.203/kWh for small C&I
customers. These rates applied to all customers in those classes, regardless of their load profile.

The treatment customers were placed on one of the three following rate designs which
included low and high rate variations. Under the Critical Peak Pricing (CPP) rate design, the hours
between 2 pm through 6 pm on non-holiday weekdays were designated as the peak period and were
priced between $0.17/kWh and $0.19/kWh for residential customers and between $0.15/kWh and
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$0.19/kWh for small C&I customers. On the ten critical peak days that were called on a day-ahead
basis, the peak hours would become the critical peak hours and be priced between $0.86/kWh and
$1.82/kWh for residential customers and between $0.86/kWh and $1.80/kWh for small C&I cus-
tomers. On non-critical weekdays and weekends, the treatment customers faced an off-peak price
between $0.17/kWh and $0.19/kWh for residential customers and between $0.15/kWh and $0.18/
kWh for small C&I customers, respectively. The rates were designed so that customers whose load
profiles corresponded to the load profile of their class would see no change in their bills, in the
absence of load shifting. Thus the off-peak price was lower than the standard tariff.

Under the Peak Time Rebate (PTR) rate design, the PWEP participants were still subject
to the standard CL&P rates. However, on the ten critical peak days, between the hours of 2 pm and
6 pm, they had the opportunity to receive a rebate between $0.78/kWh ($0.86 all-in rate) and $1.74/
kWh ($1.82 all-in rate) for residential customers and between $0.78/kWh ($0.86 all-in rate) and
$1.73/kWh ($0.80 all-in rate) for small C&I customers, if they reduced their consumption below
their typical usage during these hours.

Finally, under the Time-of-Use (TOU) rate design, the hours between 12 pm through 8 pm
on non-holiday weekdays and on critical days were designated as the peak period and were priced,
for both the residential customers and small C&I customers, between $0.27/kWh and $0.34/kWh.
All the remaining hours were designated as the off-peak period and priced between $0.14/kWh and
$0.17/kWh. Additional details on these rates are presented in the Appendix 1.

2.2 Technology

The PWEP program also tested the effectiveness of enabling technologies in facilitating
demand response when offered in conjunction with dynamic rates. In order to distinguish the im-
pacts of enabling technologies from that of prices alone, each rate design was tested with and
without enabling technologies.

The PWEP involved four types of technologies: In-Home Displays, Energy Orb, Smart
Thermostat and a Control Switch to cycle the CAC compressor. The In-Home Display provided
real-time electricity usage and cost information. This was intended to enable customers to lower
peak usage and/or shift it to off-peak hours. The Energy Orb, a small sphere, emitted different
colors to notify participants of changes in electricity prices. The Smart Thermostat allowed CL&P
to adjust the “normal” central air conditioner temperature setting during peak demand periods. And
the Control Switch, placed on the compressor of the CAC, enabled CL&P to cycle the compressor
of the central air conditioner during peak hours. Of course, the smart thermostat and the control
switch required the customer to have a central air conditioner and were not applicable to those
customers who did not have central air conditioners. A combination of three time-varying rate
designs and four different technologies yielded a rich tableau of 44 treatment cells.

2.3 Sample Design

The PWEP featured 1,251 residential customers of which 1,114 customers were the pro-
gram participants and constituted the treatment group while 137 customers constituted the control
group. The pilot also featured 1,186 small C&I customers which 1,123 participants and 63 partic-
ipants made up the treatment and the control groups, respectively. CL&P identified a random sample
of customers that represent the residential and small C&I customer population, and recruited the
participants through direct mailing and follow-up phone calls from this sample. During the recruit-
ment process, CL&P mailed invitations to randomly selected customers inviting them to join the



Name /ej351/ej351_08_Faruqui/Mp_141        08/30/2013 08:21AM     Plate # 0 pg 141   # 5

The Impact of Dynamic Pricing on Residential and Small Commercial and Industrial Usage / 141

Copyright � 2014 by the IAEE. All rights reserved.

Table 1: The PWEP Sample Design: Number of Customers by Program Cell and Class

Residential

PTP HI PTP LO PTR HI PTR LO TOU HI TOU LO
Treatment

Group
Control
Group TOTAL

TOTAL 183 188 189 193 183 178 1,114 137 1,251
NO TECH 98 104 100 108 90 98 598 0 598
TECH 85 84 89 85 93 80 516 0 516

ORB & IHD* 43 48 43 44 66 63 307 0 307
Thermostat & Switch** 42 36 46 41 27 17 209 0 209

Notes:
* IHD applies to TOU rate only.
** Switch does not apply to TOU rate.

C&I

PTP HI PTP LO PTR HI PTR LO TOU HI TOU LO
Treatment

Group
Control
Group TOTAL

TOTAL 176 185 197 185 185 195 1,123 63 1,186
NO TECH 93 97 102 98 93 100 583 0 583
TECH 83 88 95 87 92 95 540 0 540

ORB 56 52 57 57 92 95 409 0 409
Thermostat & Switch* 27 36 38 30 0 0 131 0 131

Notes:
* Switch does not apply to TOU rate.

pilot in a specific treatment. The customers who received the mailings could contact CL&P’s hot
line by email or telephone to confirm their participation. CL&P also used outbound calls to contact
customers who did not respond. Ample information was provided in the mailing to clearly describe
the pilot. The mailing described the type of rate design and/or enabling technology to each invitee.
The letter offered selected customers a specific treatment and did not mention any other rates. To
ensure a high response rate to the sociodemographic survey instrument, residential customers were
offered $25 upon enrollment. They were also offered an appreciation payment of $75 if they stayed
on the treatment through the end of the pilot.

CL&P constructed the control group from its load research sample. It is important to note
that the control group customers were not aware of their involvement in the PWEP. These customers
were intended to serve as a proxy for the behavior of the treatment group customers and to help
define conditions in the “but-for” world.

Table 1 shows the distribution of the treatment and the control customers into different
program cells as of August 2009.

In order to verify that the treatment and control group customers were comparable, and
mitigate self- selection bias, we compared the pre-treatment period usages and socio-demographic
and appliance characteristics between the two groups.

Based on Table 2, the control group was found to be slightly larger than the treatment
group in terms of mean and median average daily load in the pre-treatment period. The differences
in the sizes were accounted for by the inclusion of fixed effect terms and the difference-in-differ-
ences terms in the regression analysis. In order to assess whether the difference in the sizes is
indicative of other differences between treatment and control group customers, we also compared
the survey responses of the control and treatment customers. We found that they were comparable
in many aspects including CAC saturation, education, attitudes towards greenness, and total in-



Name /ej351/ej351_08_Faruqui/Mp_142        08/30/2013 08:21AM     Plate # 0 pg 142   # 6

142 / The Energy Journal

Copyright � 2014 by the IAEE. All rights reserved.

Table 2: Load Distribution Comparison-Control vs. Treatment

Percentiles Summary of Average Daily Load, Residential Control versus Treatment

Control

Percentiles Smallest

1% 5.3 3.8
5% 6.0 5.3
10% 7.9 5.3 Obs 137
25% 14.3 5.4 Sum of Wgt. 137

50% 20.8 Mean 24.8
Largest Std. Dev. 15.6

75% 31.8 67.4
90% 46.7 68.3 Variance 243.7
95% 59.1 73.4 Skewness 1.3
99% 73.4 80.5 Kurtosis 4.6

Treatment

Percentiles Smallest

1% 1.7 0.0
5% 4.2 0.2
10% 6.1 0.2 Obs 1,114
25% 10.3 0.3 Sum of Wgt. 1,114

50% 17.8 Mean 21.0
Largest Std. Dev. 14.7

75% 27.1 85.2
90% 39.8 90.2 Variance 216.4
95% 48.6 98.2 Skewness 1.6
99% 75.5 115.5 Kurtosis 7.0

7. On the advice of a referee, to eliminate any lingering concerns about our results being contaminated with self-selection
bias, we have included the results in Appendix 2.

come.7 These two pieces of information, when viewed together, assure us that the treatment and
control group customers were comparable in the pre-treatment period.

We believe that this sample design, which features separate but random recruitment of
customers into specific treatment groups and into the control group allows robust conclusions to
be derived that have both internal and external validity. An alternative design, which is being widely
recommended in the DOE-funded customer behavior pilots, recruits customers randomly into a pool
of experimental participants. Most of them are later allocated randomly to specific treatment groups
while some are denied treatment all together and allocated to the control group. This “recruit and
deny” design may be judged to be superior to the PWEP design in terms of internal validity since
it ensures that the treatment and control groups customers are matched not only in terms of ob-
servable characteristics but also the unobservable characteristics. However, it may have less external
validity since is unclear how representative this design is of the population at large for the simple
reason that some people may not elect to join the pilot in the first place, knowing neither whether
they would be given or denied a treatment and knowing neither what treatment they would be given,
should they be given one.
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2.4 Customer Communication

CL&P called ten critical peak days between the months of June and August. The pilot
participants were notified of the critical peak days on a day-ahead basis through one or more of the
following options: telephone messages, e-mail communication, and SMS text messages. In addition,
customers with the Energy Orb also received information through that channel.

3. DATA AND METHODOLOGY

3.1 Data

CL&P metered the hourly usage of the treatment and control group customers both before
and during the pilot period. The data compilation yielded two datasets from May to August: A
residential data set involving 1,251 customers and a small C&I data set consisting of 1,186 custom-
ers.

Price series that entered into the estimation process were first converted to all-in prices in
order to reflect the sum total of transmission, distribution, generation, and other customer charges.
We used the following procedures to integrate different price structures in our dataset. First, the
standard all-in rates were matched to the control group customers in the pre-treatment as well as
the treatment periods. They were also matched to the treatment customers in the pre-treatment
period since the pilot rates were not yet in effect. Second, the CPP all-in rates were converted into
all-in rates and matched to the CPP customers making sure that off-peak, peak, and critical peak
prices corresponded to the hours in the definition of the CPP program. Next, the PTR all-in rates
were converted into all-in rates and matched to the PTR customers during the critical peak hours.
It is important to note that we summed up the rebate component with the all-in standard rate to
obtain the all-in PTR rate. We conjecture that an additional kWh of consumption means foregoing
the rebate amount and, therefore, constitutes an opportunity cost for the customer. Finally, the TOU
all-in rates were converted into all-in rates and matched to the TOU customers making sure that
the off-peak and peak prices correspond to the hours in the definition of the TOU program.

We also used two hourly weather variables, dry bulb temperature and dew point tempera-
ture, to create a temperature-humidity index (THI) variable. THI is a standard index to measure the
discomfort level and widely used in the industry mostly in the context of load forecasting and
weather normalization.

The hourly load, price, and weather data for each of the customers in the sample formed
an unbalanced panel as well as the basis for estimating the demand models.

3.2 Demand Model

We first specified electricity demand models that represent the electricity consumption
behavior of the CL&P customers. Second, we used panel data econometrics to estimate and param-
eterize the models. Finally, we simulated the impact of the treatments that were deployed in the
pilot as well as intermediate treatments that could be deployed in the post-pilot phase.

We used the demand models to estimate the demand response impacts of each PWEP
pricing option, as opposed to alternative methods such as the analysis of variance and covariance
because they allow for the estimation of demand curves and price elasticities. This capability is
vital to being able to estimate the impact of prices other than those used in the pilot.
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8. We have also clustered the standard errors at the individual customer level.

We employed a widely used model, the constant elasticity of substitution (CES) model, to
estimate customer demand curves for electricity by time period and also used the CES model to
derive the peak to off-peak substitution and daily price elasticities. The model merits some discus-
sion. Data in electricity pricing studies that involve individual customers, whether experimental or
otherwise, is limited to repeated observations of electricity consumption and prices by period. Thus,
if the analyst wishes to estimate demand functions that are consistent with the theory of utility
maximization, he or she is forced to assume a two-stage budgeting process on the consumer’s part.
Often, this means invoking the assumption of homothetic separability in consumer preferences,
which posits inter alia that the ratio of peak to off-peak consumption does not depend on the amount
being spent on electricity. The CES model allows the elasticity of substitution to take on any value
and it has been found to be well-suited to the TOU pricing studies involving electricity.

For a two-period rate structure, the CES model consists of two equations. The first equation
models the ratio of the log of peak to off-peak quantities as a function of the ratio of the log of
peak to off-peak prices and other terms, and the second equation models the average daily electricity
consumption as a function of the daily price of electricity. The two equations constitute a system
for predicting electricity consumption by time period where the first equation essentially predicts
the changes in the load shape caused by changing peak to off-peak price ratios and the second
equation predicts the changes in the level of daily electricity consumption caused by changing the
average daily electricity price.

3.3 Econometric Estimation

We used a “fixed-effects” estimation routine to estimate the CES demand system. Fixed
effects estimation uses a data transformation method that removes any unobserved time-invariant
effect that has a potential impact on the dependent variable. By estimating a fixed effects model,
we effectively controlled for all customer specific characteristics that don’t vary over time and
isolate their impact on the dependent variable. Fixed-effects estimation routine controls for the
unobserved time-invariant variables that are likely to impact the dependent variable.8 However,
there are also several observed variables that may affect the level of the dependent variable and,
therefore, needed to be explicitly controlled for in the model. We discuss these variables and more
generally the econometric specifications of the substitution and the daily demand equations below:

Substitution Demand Equation. This equation captures the ability of customers to substitute rela-
tively inexpensive off-peak consumption for relative expensive peak consumption. It is true that
the decision to substitute between peak and off-peak periods is mainly affected by the relative prices
between these two periods. However, the relative weather conditions between the periods should
also be factored in the analysis because weather has a strong influence on load. Keeping everything
else constant, the average peak load is greater than the average off-peak load on a hot summer day,
because the average peak temperature is higher than the average off-peak temperature, which leads
to more cooling during the peak period. In the New England region, humidity augments the effect
of temperature. In order to capture the impact of temperature and humidity on the electricity load,
we created a variable called the “temperature-humidity index (THI)” (sometimes called the discom-
fort index). The variable is a weighted average of the dry bulb temperature (air temperature shielded
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from moisture) and the dew point temperature (a measure of relative humidity) and is computed as
follows:

THI = 0.55�Drybulb Temperature + 0.20�Dewpoint Temperature + 17.5

The substitution equation takes the following functional form:

3Peak_kWh
ln = α + α THI_DIFF + d (THI_DIFF xD_Month )∑0 1 t k t k� �OffPeak_kWh k = 1it

Peak_Price Peak_Price
+ α ln xTHI_DIFF + α ln xTHI_DIFFxPTR3 t 4 i� � � �OffPeak_Price OffPeak_Priceit it

Peak_Price Peak_Price
+ α ln xTHI_DIFFxORB + α ln xTHI_DIFFxET5 i 6 i� � � �OffPeak_Price OffPeak_Priceit it

3

+ α D_TreatPeriod + α D_TreatPeriod xTreatCustomer + β D_Month∑7 t 8 t i k k
k = 1

+ α D_WEEKEND + v + u10 t i it

where:

Peak_kWh
ln� �OffPeak_kWh it

: Logarithm of the ratio of peak to off-peak load for a
given day.

THI_DIFFt : The difference between average peak and average off-
peak THI.

THI_DIFF xD_Montht k : Interaction of THI_DIFF variable with monthly dum-
mies.

Peak_Price
ln xTHI_DIFFt� �OffPeak_Price it

: Interaction of and THI_DIFF.
Peak_kWh

ln� �OffPeak_kWh it

Peak_Price
ln xTHI_DIFFxPTRt� �OffPeak_Price it

: Interaction of , THI_DIFF and
Peak_kWh

ln� �OffPeak_kWh it

PTR. (applies to CPP/PTR regressions; the term is
omitted for the TOU regression).
PTR: is equal to 1 for a PTR customer, 0 otherwise.

Peak_kWh
ln� �OffPeak_kWh it

: Interaction of , THI_DIFF and
Peak_kWh

ln� �OffPeak_kWh it

ORB
ORB: is equal to 1 if the customer has an Energy Orb
but no A/C Switch or thermostat.

Peak_kWh
ln� �OffPeak_kWh it

: Interaction of , THI_DIFF and ET.
Peak_kWh

ln� �OffPeak_kWh it

ET: is equal to 1 if the customer has a thermostat or an
A/C Switch.
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9. Ideally, we would fully specify the model to include the variables in linear and non-linear forms to capture the direct
effect of the price ratio term and the interaction effect of the price ratio term with weather. However, the correlation matrix
revealed that most pairs of variables were highly correlated and it became empirically infeasible to estimate the fully specified
model. For reference purposes, on the advice of a referee, we have included the model results with both linear and non-
linear terms in Appendix 3.

D_TreatPeriodt : Dummy variable is equal to 1 when the period is June
2009 through August 31, 2009.

D_TreatCustomeri : is equal to 1 for the treatment customers.

D_TreatPeriod xTreatCustomert i : Interaction of withD_TreatPeriod D_TreatCustomert i

D_Monthk : Dummy variable that is equal to 1 when the month is
k.

D_WEEKENDt : Dummy variable that is equal to 1 on weekends.

vi : Time invariant fixed effects for customers.

uit : Normally distributed error term.

It is important to note that the substitution equation was estimated using data on both the treatment
and the control customers before and during the pilot period. This type of database allows one to
isolate the true impact of the experiment by controlling for any potential biases due to: (i) differences
between control and treatment customers in the pre-treatment period; (ii) any changes in the con-
sumption behavior of the treatment customers between the pre-treatment and the treatment periods
that are not related to the treatment per se (Faruqui, Hledik and Sergici (2009)). These potential
confounding factors are controlled for by introducing dummy variables pertaining to the customer
type and the analysis period.

This equation was estimated to determine the substitution elasticity of the pilot customers.
The substitution elasticity indicates the percent change in the ratio of peak to off-peak consumption
due to a one percent change in the ratio of peak to off-peak prices.

A priori, we hypothesize that the substitution elasticity will increase in absolute terms with
weather. To capture this behavior, we interacted the price ratio and the weather term in the model.9

We also found that the substitution elasticities differ for customers with and without the enabling
technologies. We introduced the interaction terms between the price ratios and dummy variables
for the enabling technologies to capture the incremental impact of these technologies on the price
responsiveness of the customers. Finally, we found that the substitution elasticities differ for the
TOU, the CPP and the PTR customers. We introduced an interaction term between the price ratio
and PTR customer dummy variable to identify the incremental effect of PTR, above and beyond
that of CPP. We estimated a separate model for the TOU customers as the peak period is eight
hours long compared to four hours long for the CPP and PTR customers. Also, the dummy variable
“ORB” refers to the IHD technology in the TOU regressions as the IHD technology is only appli-
cable to the TOU customers. The estimation results for the substitution demand model are provided
in Table 3.

Daily Demand Equation. The daily demand equation captures the change in the average daily
consumption due to the changes in the average daily price. We use the following specification:
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Table 3: Substitution Demand Equations, by Class and Rate Design

Substitution Equation
Dependent Variable: ln (peak_kwh/offpeak_kwh)

RESIDENTIAL SMALL C&I

TOU & Control CPP/PTR & Control TOU & Control CPP/PTR & Control
VARIABLES RESID RESID C&I C&I

thi_diff –0.002 0.001 0.006** 0.004**
(0.199) (0.353) (0.000) (0.001)

thi_diffxjune 0.002 0.000 –0.005 0.003
(0.357) (0.877) (0.155) (0.052)

thi_diffxjuly 0.011** 0.009** –0.005 0.004*
(0.000) (0.000) (0.215) (0.022)

thi_diffxaug 0.017** 0.009** 0.006 0.011**
(0.000) (0.000) (0.072) (0.000)

TreatCustomerxTreatPeriod –0.077** –0.067** –0.051* 0.031
(0.000) (0.000) (0.042) (0.215)

ln_price_ratioxthi_diff –0.010* –0.017** 0.006 –0.003*
(0.016) (0.000) (0.259) (0.032)

ln_price_ratioxthi_diff_PTR 0.006* 0.003*
(0.024) (0.048)

ln_price_ratioxthi_diff_ORB 0.005 0.006 0.009 0.002
(0.376) (0.057) (0.177) (0.387)

ln_price_ratioxthi_diff_TECH –0.006 –0.010** 0.000 –0.005*
(0.466) (0.009) (.) (0.044)

june 0.050** 0.079** 0.069** –0.003
(0.006) (0.000) (0.004) (0.911)

july 0.022 0.062** 0.084** 0.014
(0.289) (0.001) (0.000) (0.599)

aug 0.023 0.016 0.037 –0.030
(0.261) (0.399) (0.112) (0.266)

weekend 0.073** 0.085** –0.259** –0.326**
(0.000) (0.000) (0.000) (0.000)

Constant 0.099** –0.009 0.293** 0.280**
(0.000) (0.328) (0.000) (0.000)

Observations 59669 102384 52692 96555
R-squared 0.012 0.013 0.071 0.097
Number of customer 498 890 440 799

Robust p-values in parentheses
** p�0.01, * p�0.05
Note: The reported R-squareds do not include the explanatory power of the customer fixed effects. When the explanatory
power of the fixed effects is included, the adjusted R-squareds are around 0.2 for residential regressions and 0.6 for
commercial regressions.
TreatCustomer variable drops from the regression due to fixed effects estimation. TreatmentPeriod variable also drops due
to collinearity.

3

ln(kWh) = α + α ln(THI) + d (ln(THI) xD_Month ) + α ln(Price) xln(THI)∑it 0 1 t k t k 3 it t
k = 1

+ α ln(Price) xln(THI) xPTR + α ln(Price) xln(THI) xORB + α ln(Price) xln(THI) xET4 it t i 5 it t i 6 it t i

3

+ α D_TreatPeriod + α D_TreatPeriod xTreatCustomer + β D_Month∑7 t 8 t i k k
k = 1

+ α D_WEEKEND + v + u10 t i it
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where:

ln(kWh)it : Logarithm of the daily average of the hourly load.

ln(THI)it : Logarithm of the daily average of the hourly THI.

ln(THI) xD_Montht k : Interaction of ln(THI) variable with monthly dummies.

ln(Price)itxln(THIt : Interaction of ln(price) with ln(THI).

ln(Price)itxln(THI)xPTRt : Interaction of ln(price) with ln(THI) and PTR (Applies to
CPP/PTR regressions; the term is omitted for TOU).
PTR: is equal to 1 for a PTR customer.

ln(Price) xln(THI)xORBit t : Interaction of ln(price) with ln(THI) and ORB.
ORB: is equal to 1 if the customer has an Energy Orb but no
A/C Switch and no thermostat.

ln(Price)itxln(THI)xETt : Interaction of ln(price) with ln(THI) and ET.
ET: is equal to 1 if the customer has a thermostat or an A/C
Switch.

D_TreatPeriodt : Dummy variable is equal to 1 when the period is June 2009
through August 31, 2009.

D_TreatCustomeri : is equal to 1 for the Treatment customers.

D_TreatPeriodtxTreatCustomeri : Interaction of withD_TreatPeriod D_TreatCustomert i

D_Monthk : Dummy variable that is equal to 1 when the month is k.

D_WEEKENDt : Dummy variable that is equal to 1 on weekends.

vt : Time invariant fixed effects for customers.

uit : Normally distributed error term.

The daily equation is estimated to determine the daily price elasticity of the CL&P customers. Daily
price elasticity indicates the percent change in the daily average consumption due to a one percent
change in the daily average price. Similar to the substitution elasticities, the daily price elasticities
are interacted with the weather term. The estimation results for the daily demand equation are
presented in Table 4.

4. RESULTS

4.1 Elasticities

After estimating the parameters of the substitution and the daily equations, we next cal-
culated the substitution and the daily price elasticities. As mentioned earlier, the CL&P price elas-
ticities are weather dependent, i.e., they take on different values for different weather conditions.
The impact of the weather on the substitution elasticity and the daily elasticity is captured through
the THI_DIFF variable and the ln (THI) variable, respectively. In order to quantify the load impacts
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Table 4: Daily Demand Equations, by Class and Rate Design

Daily Equation
Dependent Variable: ln (average_daily_consumption)

RESIDENTIAL SMALL C&I

TOU & Control CPP/PTR & Control TOU & Control CPP/PTR & Control
VARIABLES RESID RESID C&I C&I

ln_thi –0.208 0.001 –0.012 0.478**
(0.178) (0.983) (0.991) (0.000)

ln_thixjune 1.168** 1.060** 0.229* 0.427**
(0.000) (0.000) (0.021) (0.000)

ln_thixjuly 2.587** 2.758** 0.874** 1.098**
(0.000) (0.000) (0.000) (0.000)

ln_thixaug 3.102** 3.022** 1.019** 1.005**
(0.000) (0.000) (0.000) (0.000)

TreatCustomerxTreatPeriod –0.043 –0.016 0.046 0.042
(0.194) (0.562) (0.393) (0.209)

ln_pricexln_thi –0.107 –0.006* –0.359 0.004
(0.214) (0.016) (0.580) (0.437)

ln_pricexln_thi_PTR 0.007 –0.003
(0.098) (0.656)

ln_pricexln_thi_ORB –0.040 0.005
(0.734) (0.504)

ln_pricexln_thi_TECH 0.013
(0.082)

june –4.789** –4.347** –0.992* –1.805**
(0.000) (0.000) (0.017) (0.000)

july –10.697** –11.422** –3.643** –4.588**
(0.000) (0.000) (0.000) (0.000)

aug –12.801** –12.472** –4.233** –4.166**
(0.000) (0.000) (0.000) (0.000)

weekend 0.032** 0.022** –0.478** –0.491**
(0.000) (0.000) (0.000) (0.000)

Constant –0.440 –0.580** –2.099** –1.443**
(0.064) (0.002) (0.000) (0.000)

Observations 60564 108145 53112 97421
R-squared 0.161 0.173 0.183 0.199
Number of customer 498 890 443 806

Robust p-values in parentheses
** p�0.01, * p�0.05
Note: The reported R-squared values do not include the explanatory power of the customer fixed effects. When the explan-
atory power of the fixed effects is included, the adjusted R-squared values are around 0.8 for residential regressions and
0.9 for commercial regressions.
The TreatCustomer variable drops from the regression due to fixed effects estimation. The TreatmentPeriod variable also
drops due to collinearity.

from the PWEP, we determined the “average CPP event day weather” to be used in the calculation
of the price elasticities. We identified the average CPP event day weather by finding the average
values of the THI_DIFF and the THI variables. We calculated the averages for the six event days
in June-July and also separately for the four event days in August. As the event days called during
June and July had very mild temperatures and were not representatives of the critical peak event
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10. These days nevertheless were included in the regression models since additional variability in the exogenous variables
leads to greater precision in the parameter estimates.

11. For the purpose of calculating elasticities and impact estimations, we determined the weighted average weather
terms using Bradley and White Plains average August event-day weather information. We used the distribution of the
treatment customers to the weather stations as weights in the calculation.

days, we used the event days in August to calculate the average event day weather variable.10,11

Resulting values of the weather variables are provided in the Appendix 1.

Substitution Elasticity. The substitution elasticities can be derived from the following equations:

Subst_Elasticity = α *THI_DIFF (Price,Weather) (1)price_CPP/TOU 3 t

Subst_Elasticity = (α + α )*THI_DIFF (Price,Weather)price_PTR 3 4 t

Subst_Elasticity = (α + α )*THI_DIFF (Price,Weather, and ORB) (2)price + ORB_CPP/TOU 3 5 t

Subst_Elasticity = (α + α + α )*THI_DIFF (Price,Weather, and ORB)price + ORB_PTR 3 4 5 t

Subst_Elasticity = (α + α )*THI_DIFF (Price,Weather, and ET) (3)price + ET_CPP/TOU 3 6 t

Subst_Elasticity = (α + α + α )*THI_DIFF (Price,Weather, and ET)price + ET_PTR 3 4 6 t

These equations make it possible to determine a substitution elasticity conditional on a specific
weather condition and the existence of an enabling technology.

Daily Elasticity. The daily price elasticities from the estimated model can be derived using the
following equations:

Daily_Elasticity = α *ln(THI) (Price,Weather) (4)price_CPP/TOU 3 it

Daily_Elasticity = (α + α )*ln(THI) (Price,Weather) (5)price_PTR 3 4 it

It is also possible to estimate a daily price elasticity conditional on a specific weather condition
using this equation.

4.2 Empirical Findings

Table 5 reports the estimated substitution and daily price elasticities for the PWEP resi-
dential customers. Overall, we found that the elasticities of substitution, while smaller than those
observed in warmer climates, are statistically significant. Unlike the substitution elasticities, the
daily price elasticities were statistically insignificant except for the CPP and the PTR residential
customers.

We also found that the customers do not show the same price responsiveness to the equiv-
alently designed PTR and CPP rates. This finding contradicts the result of the BGE pilot in Maryland
which, during its first year of operation in 2008, tested both the CPP and PTR rates. However, it
is in line with the results of the PowerCents DC pilot carried out by Pepco in the District of Columbia
which ran during the summers of 2008–2009 (Faruqui and Sergici (2011) and Wolak (2011)).
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Table 5: Residential Elasticity Estimates

Elasticity Type TOU CPP PTR

Substitution Elasticity Estimates

Price Only –0.047 –0.081 –0.052
S.E. 0.019 0.010 0.009

Price + ORB –0.047 –0.081 –0.052
S.E. 0.022 0.013 0.012

Price + TECH –0.047 –0.128 –0.100
S.E. 0.034 0.017 0.017

Daily Elasticity Estimates

Price Only –0.453 –0.026 –0.026
S.E. 0.364 0.010 0.014

Price + ORB –0.453 –0.026 –0.026
S.E. 0.364 0.010 0.014

Price + TECH –0.453 –0.026 –0.026
S.E. 0.364 0.010 0.014

Note: Numbers in grey represent insignificant elasticities. They were treated as zero
in the impact calculations.

12. See Faruqui and George (2005) for the SPP analysis and Faruqui and Sergici (2011) for the BGE analysis.

Based on the results presented in Table 5, the CPP customers were more price responsive
than the PTR and TOU customers. The CPP substitution elasticity was estimated as –0.081 (using
August event-day weather). This is very similar to the average substitution elasticity of –0.076
reported in the California Statewide Pricing Pilot (SPP). It is lower than the value of –0.096 reported
in the BGE pilot.12 Similarly, the PTR customers were more price responsive than the TOU cus-
tomers. The incremental effect from ORB was not statistically significant for any of the TOU, the
CPP or the PTR programs. This finding contrasts with the result observed in the Maryland pilot
where the ORB provided a boost. However, the incremental effect from the TECH was statistically
significant for the CPP and the PTR programs, but not for the TOU program. Finally, the CPP and
the PTR customers exhibited some daily price responsiveness, whereas the TOU customers did not.
The CPP daily elasticity was estimated as –0.026, about half the value observed in the California
experiment. Table 6 reports the estimated substitution and daily price elasticities for the PWEP
small C&I customers.

Based on the results presented in Table 6, the small C&I TOU customers, with or without
enabling technology, did not respond to dynamic prices in a statistically significant way. The CPP
customers responded to prices without any enabling technologies, whereas the PTR customers did
not. Overall, the price responsiveness of small C&I customers was substantially lower than that of
residential customers. The incremental effect from ORB was not statistically significant for any of
the CPP and PTR programs. However, the CPP and PTR customers both responded to prices when
prices are accompanied with enabling technologies. Finally, none of the CPP, PTR, and TOU
customers exhibited daily price responsiveness.

Overall, the findings from the PWEP bear some resemblance to those from other dynamic
pricing pilots: (i) customers do respond to dynamic pricing, (ii) price responsiveness increases when
the prices are paired with enabling technologies, (iii) price responsiveness is higher in hotter cli-
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Table 6: Small C&I Elasticity Estimates

Elasticity Type TOU CPP PTR

Substitution Elasticity Estimates

Price Only 0.028 –0.016 0.002
S.E. 0.025 0.007 0.007

Price + ORB 0.072 –0.016 0.012
S.E. 0.028 0.011 0.009

Price + TECH 0.028 –0.042 –0.022
S.E. 0.025 0.012 0.012

Daily Elasticity Estimates

Price Only –1.527 0.015 0.005
S.E. 2.755 0.019 0.022

Price + ORB –1.698 0.036 0.024
S.E. 2.718 0.024 0.027

Price + TECH –1.527 0.071 0.060
S.E. 2.755 0.027 0.029

Note: Numbers in grey represent insignificant elasticities. They were treated as zero
in the impact calculations.

mates, and (iv) price responsiveness of small C&I customers is lower than that of residential cus-
tomers.

However, some of the results differ from those of the earlier pilots: (i) the ORB impact
was not found to be significant; (ii) the PTR rates yielded a lower response compared to the CPP
rates; and (iii) the TOU responsiveness was low for the residential customers and non-existent for
the small C&I customers, perhaps because the peak period was eight hours long (it was only six
hours long in the California SPP pilot and customers with and without enabling technology showed
price responsiveness, unless they were less than 20 kW in size).

4.3 Simulating Demand Response Impacts

After estimating the substitution and daily demand equations, we determined demand
response impacts for the rates tested in the PWEP. We determined the impacts through the Pricing
Impact Simulation Model (PRISM) software. The PRISM software emerged from the California
(SPP) (Faruqui and George (2005)). Originally developed for California, PRISM has been adapted
to conditions in other parts of North America after making adjustments for weather, customer price
responsiveness (price elasticities), rate, and load shape characteristics. We calibrated the PRISM
model to the estimated elasticities, the typical CL&P residential and small C&I load profiles, and
all-in rates the control and the PWEP customers pay during the pilot period and create the CL&P-
PRISM model. Using the CL&P-PRISM model, we calculate the demand response impacts for the
rates that were tested in the PWEP program. CL&P-PRISM also allows calculating the impacts
from other rates that are not tested in the PWEP.

The PRISM model generates several metrics including percent change in peak and off-
peak consumption on critical and non-critical days and percent change in total monthly consump-
tion.

4.4 Customer Impacts

Table 7 presents the residential PWEP customer impacts. The TOU customers reduced
their critical peak period usage by 1.6 to 3.1 percent while the PTR customers reduced their critical
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Figure 1: Residential Demand Curves for CPP and PTR Customers

13. It might seem counter intuitive that the total monthly consumption increases as a result of CPP pricing. The reason
is that higher CPP rates were effective only on a small number of hours; therefore the demand reductions took place on a
small number of hours. On the other hand, all other hours were priced lower than the standard rate; therefore there was a
load increase on a large number of hours. As a result, the total usage reduction was more than offset by total usage increase
on a monthly basis.

peak period usage by 7.0 to 17.8 percent. The CPP customers achieved the largest peak reduction
of all three rate types, which ranged from 10.2 to 23.3 percent. As a result of the program, the total
monthly consumption increased by about 0.2 percent for the CPP program and decreased by about
0.2 percent for the PTR and the TOU programs.13 Figure 1 lays out the implied demand curves for
PWEP residential customers on the CPP and PTR rates; the relative shapes of these curves are
consistent with the finding that the customers were more price responsive to the CPP rates than
they were to the PTR rates.

We also found that within the subset of the PWEP residential customers who did respond
to the income question, the elasticities of substitution for low income customers were essentially
the same as those for the average customer with known income data. It is important to note that
this result only holds for customers who responded to the survey, as only 552 out of 1,251 customers
responded to the income question on the survey. Using the second definition of low income, hardship
status as certified by the state, the results were slightly different. In this case, results indicated that
hardship customers responded slightly less than the average treatment customer to the PTP rate,
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although they did still respond. The incremental effect of the PTR rate was similar for hardship
and non-hardship customers. We estimate that where average customers responded to the high PTP
rate with a 20 percent peak reduction, hardship customers responded with a roughly 13 percent
reduction, or about two-thirds as much (Faruqui, Sergici, and Palmer (2010)) .

As mentioned earlier, the small C&I customers were less price responsive compared to
the residential customers. The TOU customers did not respond to the TOU programs in a statistically
significant fashion. The PTR customers reduced their critical peak period usage by 2.7 to 4.1 percent
while the CPP customers reduced their critical peak period usage by 1.7 to 7.2 percent. The total
monthly consumption remained unchanged in response to the time-varying rates.

5. CONCLUDING REMARKS

We find evidence of statistically significant elasticities of substitution in Connecticut,
which are only slightly lower than those observed in warmer climates with higher saturations of
central air conditioning loads. We also find that equivalently designed PTR and CPP rates do not
have equivalent impacts on peak demand. This finding contradicts the result found in the BGE pilot
in Maryland during its first summer of operation in 2008, but is in line with the PowerCents DC
pilot carried out by Pepco in the District of Columbia, which ran during the summers of 2008–09.
This remains a topic for further research.

We also find that C&I customers are less price-responsive compared to the residential
customers. TOU rates do elicit response for the residential class, but none for small C&I customers.
This finding is consistent with those from earlier studies.

The Energy Orb did not boost price responsiveness, again in contrast to results observed
in Maryland. However, cycling of residential air conditioners notably boosted price responsiveness
for customers on dynamic pricing rates, but not for those on TOU rates.

We also found that within the subset of the PWEP residential customers who did respond
to the income question, the elasticities of substitution for low income customers were essentially
the same as those for the average customer with known income data. It is important to note that
this result only holds for customers who responded to the survey, as only 552 out of 1,251 customers
responded to the income question on the survey. Using the second definition of low income, hardship
status as certified by the state, the results were slightly different. In this case, results indicated that
hardship customers responded slightly less than the average treatment customer to the PTP rate,
although they did still respond. The incremental effect of the PTR rate was similar for hardship
and non-hardship customers.

The results of the PWEP experiment can be used to carry out a cost-benefit analysis of
the deployment of smart meters and smart prices in the New England region. Such an analysis was
indeed carried out for its Connecticut service territory and presented by CL&P to its regulatory
commission in November 2010. The results of the cost-benefit showed a net societal benefit of $87
million and were supportive of the full scale deployment of smart metering and smart pricing
(Connecticut Light & Power Company (2010)). However, the recommendation was opposed by the
state’s attorney general (State of Connecticut Department of Public Utility Control (2011)). The
Commission has yet to rule on the matter.

REFERENCES

Allcott, Hunt (2011). “Rethinking Real-Time Electricity Pricing.” Resource and Energy Economics 33(4): 820–842. http://
dx.doi.org/10.1016/j.reseneeco.2011.06.003.



Name /ej351/ej351_08_Faruqui/Mp_156        08/30/2013 08:21AM     Plate # 0 pg 156   # 20

156 / The Energy Journal

Copyright � 2014 by the IAEE. All rights reserved.

Borenstein, Severin (2005). “The Long-run Efficiency of Real-Time Pricing.” The Energy Journal 26(3): 93–116. http://
dx.doi.org/10.5547/ISSN0195-6574-EJ-Vol26-No3-5.

Chao, Hung-po (1983). “Peak-Load Pricing and Capacity Planning with Demand and Supply Uncertainty.” Bell Journal of
Economics 14(1): 170–90.

Charles River Associates (2005). Impact Evaluation of the California Statewide Pricing Pilot. March 16. The report can be
downloaded from:

http://www.calmac.org/publications/2005-03-24_SPP_FINAL_REP.pdf.
Connecticut Light & Power Company, CL&P’s Plan-it Wise Pilot Results, AMI & Dynamic Pricing Cost Benefit Analysis

and Plan, Docket No. 05-10-03-RE04, DPUC Hearing, November 22, 2010.
Crew, Michael A., Chitru S. Fernando and Paul R. Kleindorfer (1995). “The Theory of Peak Load Pricing: A Survey.”

Journal of Regulatory Economics 8: 215–248. http://dx.doi.org/10.1007/BF01070807.
Enright, Toni and Ahmad Faruqui (2013). “A Bibliography on Dynamic Prices and Time-of-Use Rates Version 2.0,” January.

The bibliography can be downloaded from: http://papers.ssrn.com/sol3/papers.cfm?abstract_id = 2178674
Faruqui, Ahmad (2010). “The Ethics of Dynamic Pricing.” The Electricity Journal, 23(6): 13–27. http://dx.doi.org/10.1016/

j.tej.2010.05.013.
Faruqui, Ahmad and Stephen S. George (2005). “Quantifying Customer Response to Dynamic Pricing.” The Electricity

Journal 18(4): 53–63. http://dx.doi.org/10.1016/j.tej.2005.04.005.
Faruqui, Ahmad and Sanem Sergici (2009). ”Household Response to Dynamic Pricing of Electricity – A Survey of 15

Experiments.” Journal of Regulatory Economics 38(2): 193–225. http://dx.doi.org/10.1007/s11149-010-9127-y.
Faruqui, Ahmad and Sanem Sergici (2011). ” Dynamic pricing of electricity in the mid- Atlantic region: econometric results

from the Baltimore gas and electric company experiment.” Journal of Regulatory Economics 40(1): 82–109. http://
dx.doi.org/10.1007/s11149-011-9152-5.

Faruqui, Ahmad and Lisa Wood (2008). Quantifying the Benefits of Dynamic Pricing in the Mass Market. Edison Electric
Institute, Washington, D.C.

Faruqui, Ahmad, Ryan Hledik, Sanem Sergici (2009). “Piloting the Smart Grid.” The Electricity Journal 22(7): 55–69.
http://dx.doi.org/10.1016/j.tej.2009.06.012.

Faruqui, Ahmad, Sanem Sergici and Lamine Akaba (2012). “Dynamic Pricing of Electricity for Residential Customers: The
Evidence from Michigan.” Energy Efficiency 5(4): 1–14.

Faruqui, Ahmad, Sanem Sergici and Jennifer Palmer (2010). The impact of dynamic pricing on low income customers. The
Institute for Electric Efficiency, Washington, DC, September. http://www.edisonfoundation.net/IEE/Documents/
IEE_LowIncomeDynamicPricing_0910.pdf

Faruqui, Ahmad, Phil Hanser, Ryan Hledik and Jenny Palmer (2010). “Assessing Ontario’s Regulated Price Plan,” prepared
for the Ontario Energy Board, December 8, 2010. http://www.smartgridinformation.info/pdf/4542_doc_1.pdf.

Faruqui, Ahmad, Doug Mitarotonda, Lisa Wood, Adam Cooper and Judith Schwartz (2011). The Costs and Benefits of

Smart Meters for Residential Customers, IEE Whitepaper, July 2011. http://www.edisonfoundation.net/iee/Documents/
IEE_BenefitsofSmartMeters_Final.pdf

Federal Energy Regulatory Commission (2012). Assessment of Demand Response and Advanced Metering. Staff Report,
December. http://www.ferc.gov/legal/staff-reports/12-20-12-demand-response.pdf

Herter, Karen (2007). “Residential implementation of critical-peak pricing of electricity.” Energy Policy 35(4): 2121–2130.
http://dx.doi.org/10.1016/j.enpol.2006.06.019.

Herter, Karen, Patrick McAuliffe and Arthur Rosenfeld (2007). “An exploratory analysis of California residential customer
response to critical peak pricing of electricity.” Energy 32(1): 25–34. http://dx.doi.org/10.1016/j.energy.2006.01.014.

Littlechild, Stephen C. (2003). “Wholesale Spot Price Pass-Through.” Journal of Regulatory Economics 23(1): 61–91. http://
dx.doi.org/10.1023/A:1021883431400.

Newsham, Guy R. and Brent G. Bowker (2010). “The effect of utility time-varying pricing and load control strategies on
residential summer peak electricity use: A review.” Energy Policy 38(7): 3289–96. http://dx.doi.org/10.1016/
j.enpol.2010.01.027.

Rowlands, Ian H. and Ian M. Furst (2011). “The cost impacts of a mandatory move to time-of-use pricing on residential
customers: an Ontario (Canada) case-study.” Energy Efficiency 4(4): 571–85. http://dx.doi.org/10.1007/s12053-011-9113-
y.

State of Connecticut Department of Public Utility Control, Brief of George Jepsen, Attorney General for the State of
Connecticut, Docket No. 05-10-03RE04, February 8, 2011. http://www.smartgridlegalnews.com/ConnAG_brief.pdf

Vickrey, W. S. (1971). “Responsive Pricing of Public Utility Services.” Bell Journal of Economics 2(1): 337–46. http://
dx.doi.org/10.2307/3003171.



Name /ej351/ej351_08_Faruqui/Mp_157        08/30/2013 08:21AM     Plate # 0 pg 157   # 21

The Impact of Dynamic Pricing on Residential and Small Commercial and Industrial Usage / 157

Copyright � 2014 by the IAEE. All rights reserved.

Wolak, Frank A. (2011). “Do Residential Customers Respond to Hourly Prices: Evidence from a Dynamic Pricing Exper-
iment.” American Economic Review: Papers and Proceedings. http://www.stanford.edu/group/fwolak/cgibin/sites/default/
files/files/hourly_pricing_aer_paper.pdf.

APPENDIX 1—RATE DETAILS

Table 1.1: PWEP All-in Rates ($/kWh)—Residential

Rate 1 Rate 5

June July-August June July-August Weighted Average

Control 0.201 0.201 0.202 0.202 0.201
TOU_HI_PEAK 0.344 0.343 0.344 0.344 0.343
TOU_HI_OPEAK 0.144 0.143 0.144 0.144 0.143
TOU_LO_PEAK 0.273 0.272 0.273 0.273 0.272
TOU_LO_OPEAK 0.173 0.172 0.173 0.173 0.172
PTP_HI_PEAK 1.815 1.814 1.815 1.816 1.815
PTP_HI_OPEAK 0.165 0.164 0.165 0.166 0.165
PTP_LO_PEAK 0.857 0.856 0.857 0.857 0.856
PTP_LO_OPEAK 0.187 0.186 0.187 0.187 0.186
PTR_HI_PEAK 1.815 1.815 1.816 1.816 1.815
PTR_HI_OPEAK 0.201 0.201 0.202 0.202 0.201
PTR_LO_PEAK 0.856 0.856 0.857 0.857 0.856
PTR_LO_OPEAK 0.201 0.201 0.202 0.202 0.201

Note: Rates are shown for the customers who purchase their power from NU. For customers purchasing their power from
3rd party suppliers, generation charges are 10% lower on average.

Table 1.2: PWEP All-in Rates ($/kWh)—Small C&I

Rate 30 Rate 35

June July-August June July-August Weighted Average

Control 0.203 0.205 0.180 0.181 0.203
TOU_HI_PEAK 0.341 0.342 0.318 0.319 0.341
TOU_HI_OPEAK 0.141 0.142 0.118 0.119 0.141
TOU_LO_PEAK 0.272 0.274 0.249 0.250 0.272
TOU_LO_OPEAK 0.172 0.174 0.149 0.150 0.172
PTP_HI_PEAK 1.805 1.806 1.781 1.782 1.804
PTP_HI_OPEAK 0.155 0.156 0.131 0.132 0.154
PTP_LO_PEAK 0.853 0.855 0.830 0.831 0.853
PTP_LO_OPEAK 0.183 0.185 0.160 0.161 0.183
PTR_HI_PEAK 1.804 1.806 1.781 1.782 1.804
PTR_HI_OPEAK 0.203 0.205 0.180 0.181 0.203
PTR_LO_PEAK 0.853 0.855 0.830 0.831 0.853
PTR_LO_OPEAK 0.203 0.205 0.180 0.181 0.203

Note: Rates are shown for the customers who purchase their power from NU. For customers purchasing their power from
3rd party suppliers, generation charges are 10% lower on average.

Table 1.3: Weather Values used in the Elasticity Calculations

TOU Non-TOU

thi_diff ln_thi thi_diff ln_thi

Residential 4.75 4.25 4.75 4.29
Small C&I 5.13 4.25 5.19 4.29
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APPENDIX 2—SURVEY ANALYSIS

Table 2.1: Air Conditioning Ownership

Mean Comparison Test—Question A2

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

Control 121 1.430 0.045 0.497 1.340 1.519
Treatment 1072 1.432 0.015 0.496 1.402 1.462

Combined 1193 1.432 0.014 0.496 1.404 1.460

D –0.002 0.048 –0.095 0.091

D = mean (Control)– mean Treatment) Pr(⎪T⎪�⎪t⎪) = 0.964 t = –0.045
H0: D = 0, HA: D ≠ 0 Outcome: Do Not Reject H0

Table 2.2: Highest Level of Education Completed by the Head of Household
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Distribution of Responses, Residential, Q:_803

Elementary -1 Some High School -2
High School Graduate -3 Some Coll/Trade/Vocat. -4
College Graduate -5 Postgraduate Degree -6
Other -7 Prefer not to answer -8

Mean Comparison Test—Question 803

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

Control 121 4.694 0.126 1.383 4.445 4.943
Treatment 668 4.716 0.057 1.464 4.604 4.827

Combined 789 4.712 0.052 1.451 4.611 4.814

D –0.021 0.143 –0.303 0.260

D = mean (Control)–mean Treatment) Pr(⎪T⎪�⎪t⎪) = 0.882 t = –0.149
H0: D = 0, HA: D ≠ 0 Outcome: Do Not Reject H0
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Table 2.3: Degree of “Green Home”

15

54

29

2

31

37

29

3

0
20

40
60

P
er

ce
nt

control treatment

by Group
Distribution of Responses, Residential, Q:_802

Not Green -0 Mildly Green -1
Moderately Green -2 Extremely Green -3

Mean Comparison Test—Question 802

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

Control 120 1.175 0.063 0.694 1.050 1.300
Treatment 668 1.034 0.033 0.848 0.970 1.099

Combined 788 1.056 0.029 0.828 0.998 1.114

D 0.141 0.082 –0.020 0.302

D = mean (Control)–mean Treatment) Pr(⎪T⎪�⎪t⎪) = 0.087 t = 1.714
H0: D = 0, HA: D ≠ 0 Outcome: Do Not Reject H0

Table 2.4: Total Annual Household Income
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Less than $50,000 -1 $50,000-$100,000 -2
$100,000-$150,000 -3 More than $150,000 -4
Prefer not to answer -5

Mean Comparison Test—Question 804

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

Control 121 2.636 0.130 1.432 2.379 2.894
Treatment 667 2.672 0.062 1.609 2.549 2.794

Combined 788 2.666 0.056 1.583 2.556 2.777

D –0.035 0.156 –0.342 0.272

D = mean (Control)–mean Treatment) Pr(⎪T⎪�⎪t⎪) = 0.822 t = –0.226
H0: D = 0, HA: D ≠ 0 Outcome: Do Not Reject H0
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APPENDIX 3—REGRESSION SENSITIVITY

Table 3.1: Substitution Equation with both Linear and
Non-linear Price Terms

TOU & Control PTP/PTR & Control
VARIABLES RESID RESID

thi_diff –0.002 0.001
(0.120) (0.355)

thi_diffxjune –0.001 0.000
(0.567) (0.870)

thi_diffxjuly 0.007* 0.005*
(0.018) (0.018)

thi_diffxaug 0.014** 0.008**
(0.000) (0.001)

TreatCustomerxTreatPeriod –0.061** –0.065**
(0.003) (0.000)

ln_price_ratio –0.045 –0.071**
(0.131) (0.008)

ln_price_ratioxthi_diff –0.005 –0.003
(0.222) (0.540)

ln_price_ratioxPTR 0.004
(0.882)

ln_price_ratioxthi_diff_PTR 0.005
(0.362)

ln_price_ratioxORB –0.068 0.031
(0.102) (0.370)

ln_price_ratioxthi_diff_ORB 0.016** –0.000
(0.008) (0.980)

ln_price_ratioxTECH –0.092 –0.120**
(0.115) (0.001)

ln_price_ratioxthi_diff_TECH 0.009 0.018*
(0.211) (0.010)

june 0.066** 0.078**
(0.000) (0.000)

july 0.039 0.080**
(0.052) (0.000)

aug 0.037 0.019
(0.067) (0.306)

weekend 0.062** 0.084**
(0.000) (0.000)

Constant 0.106** –0.009
(0.000) (0.349)

Observations 59,669 102,384
R-squared 0.013 0.014
Number of customer 498 890

Robust pval in parentheses
** p�0.01, * p�0.05


