

33% RENEWABLES PORTFOLIO STANDARD Implementation Analysis Preliminary Results

33% RPS Implementation Analysis

Preliminary Results

CPUC Energy Division Briefing for Legislative Staff June 19, 2009

Purpose and Scope of Analysis

- CPUC's Energy Division staff initiated this analysis in order to answer two key questions:
 - What steps will the state need to take to reach a 33% RPS by 2020?
 - How much will it cost to meet a 33% RPS by 2020?
- Scope of analysis included:
 - Estimate the amount of generation and transmission needed to reach a 33% RPS
 - Several procurement strategies (cases) for achieving a 33% RPS by 2020
 - Calculated the projected cost of different RPS cases in the year
 2020
 - Timelines for generation and transmission facilities needed to reach a 33% RPS

33% RPS Resources Needed

20% RPS Reference Case would require	33% RPS Reference Case would require
35 TWh of new renewable electricity in 2020, in addition to 27 TWh of generation from renewables in existence at the end of 2007	75 TWh of new renewable electricity in 2020, in addition to 27 TWh of generation from renewables in existence at the end of 2007
4 New Major Transmission Lines at cost of \$4 Billion	7 Additional Major Transmission Lines at cost of \$12 Billion

Evaluated Renewable Portfolio Options for Achieving 33% RPS

Case Name	Description
20% RPS Reference Case	Utilities procure 35 TWh of additional renewables to meet a 20% RPS target by 2020.
33% RPS Reference Case	Utilities procure 75 TWh of additional renewables to meet a 33% RPS target by 2020. There is heavy emphasis on projects that are already either contracted or short-listed with California IOUs, which includes a significant proportion of solar thermal and solar photovoltaic resources.
High Wind Case	Assumes less reliance on in-state solar thermal and more reliance on the less expensive wind resources in California and Baja.
High Out-of-State Delivered Case	Allows construction of new, long-line, multi-state transmission to allow California utilities to procure large quantities of low-cost wind and geothermal resources in other western states. Does not use tradable renewable energy certificates as a compliance tool. Thus, all out-of-state electricity is delivered to California.
High DG Case	Assumes limited new transmission corridors are developed to access additional renewable resources to achieve a 33% RPS. Instead, extensive, smaller-scale renewable generation is located on the distribution system and close to substations.

- <u>33% RPS reference case is current RPS portfolio plus planned procurement</u>
- Implementation assessment only done on 20% and 33% RPS reference cases
- More analysis is needed to determine if alternative 33% RPS cases can be implemented

33% RPS Reference Case Timelines

- Timeline 1 (Historical experience without process reform)
 - 33% RPS achieved in 2024
 - Assumes planning, permitting, and construction processes are almost entirely sequential.
- Timeline 2A (Current practice with process reform & no external risks)
 - 33% RPS achieved in 2021
 - Assumes successful implementation of reforms currently in process
 - Timeline assumes no delays due to external risks beyond state control
- Timeline 2B (Current practice with process reform & external risks)
 - 33% RPS not achieved
 - Assumes state successfully implements reforms, but factors outside state control (e.g., technology failure, financing risk, environmental risk, and public opposition/legal challenges) cause delay or failure of some projects

Timeline 1 - Historical Experience Without Process Reform

Source: CPUC/Aspen

Result: 33% RPS achieved in 2024

Timeline 2A - Current Practice With Process Reform & No External Risks

Source: CPUC/Aspen

Result: 33% RPS achieved in 2021

Timeline 2B - Current Practice With Process Reform & External Risks

Source: CPUC/Aspen

 Result: 33% RPS is not achieved, mitigating strategies are needed

Example of External Risk Technology Risk

 33% RPS Reference Case includes over 7,000 MW of solar thermal projects and over 3,000 MW of proposed solar PV

Renewable Resource Mixes in 2020 Under Different Cases

Electricity Costs Will Increase in 2020, Regardless of RPS Requirements

Category	2008	All-Gas Scenario in 2020	20% RPS Reference Case in 2020	33% RPS Reference Case in 2020
Existing and New Conventional Generation Fixed Costs*	\$8.5	\$11.8	\$11.1	\$9.9
Existing and New Conventional Generation Variable Costs⁺	\$13.2	\$16.5	\$14.2	\$11.6
Existing Transmission and Distribution*	\$15.1	\$20.5	\$20.5	\$20.5
New Transmission for Renewables [*]	N/A	N/A	\$0.5	\$1.8
New Renewable Generation and Integration*	N/A	N/A	\$4.3	\$10.8
CO ₂ Allowances ^{*1}	N/A	\$0.4	- \$0.03	- \$0.5
Total Statewide Electricity Expenditures	\$36.8	\$49.2	\$50.6	\$54.2
Average Statewide Electricity Cost per kWh	\$0.132/kWh	\$0.154/kWh	\$0.158/kWh	\$0.169/kWh

*Expressed in billions of 2008 dollars in 2020.

33% RPS Reference Case 7.1% Higher than 20% RPS Reference Case

Category	20% RPS Reference Case	33% RPS Reference Case	33% High Wind Case	33% High Out-of-State Delivered Case	33% High DG Case
Total Statewide Electricity Expenditures*	\$50.6	\$54.2	\$52.7	\$52.5	\$58.0
Average Statewide Electricity Cost	\$0.158/kWh	\$0.169/kWh	\$0.164/kWh	\$0.164/kWh	\$0.181/kWh
Difference Relative to 20% RPS Reference Case [*]	N/A	+\$3.6	+\$2.1	+\$1.9	+\$7.4
Percent Difference Relative to 20% RPS Reference Case	N/A	+7.1%	+4.2%	+3.8%	+14.6%
Difference Relative to 33% RPS Reference Case [*]	N/A	N/A	-\$1.5	-\$1.7	+\$3.8
Percent Difference Relative to 33% RPS Reference Case	N/A	N/A	-2.8%	-3.1%	+7.0%

*Expressed in billions of 2008 dollars in 2020.

The 33% RPS Reference Case is the Most Expensive Case that Needs New Transmission Lines

Source: CPUC/E3

Statewide Electricity Expenditures Average Electricity Cost per kWh

Sensitivity Analysis

- Projecting the costs of different renewable and fossil-fired energy sources out to 2020 requires numerous assumptions about future conditions including:
 - Fuel and CO₂ allowance prices
 - Load growth
 - Equipment costs (e.g. solar PV)
- Many of these variables are highly uncertain, and some significantly influence the model's results

Impact of Gas and CO₂ Allowance Prices on Statewide Expenditures

- A 33% RPS can serve as a hedge against natural gas prices, but only under very high natural gas and GHG allowance prices.
- Hedging value in itself is not a very strong justification to do a 33% RPS

Impact of High Energy Efficiency Achievement (Low-Load Sensitivity)

Costs	Base Case Loads	Low-Load Sensitivity
Total Electricity Expenditures, 20% RPS Reference Case ⁻	\$50.6	\$46.4
Total Electricity Expenditures, 33% RPS Reference Case ⁻	\$54.2	\$50.4
Incremental cost of 33% RPS Reference Case *	\$3.6	\$4.0
Percent Difference Relative to 20% RPS Reference Case	7.1%	8.6%

*Expressed in billions of 2008 dollars in 2020.

- The interplay between energy efficiency achievement and renewable energy procurement highlights the need to analyze and plan for the interactions among the state's various policy goals.
- If the state does not plan for interactions, then a 33% RPS by 2020 could result in a surplus of energy or capacity and excess consumer costs.

Cost Savings Due to Solar PV Cost Reduction Sensitivity

Source: CPUC/E3

Base Case Solar PV Cost Reduction Sensitivity

- Dramatic cost reductions in solar PV could make a solar DG strategy cost-competitive with central station renewable generation.
- More analysis is necessary to determine the programmatic strategies necessary to achieve a high-DG scenario as well as the feasibility of high penetrations of solar PV on the distribution grid.

Achieving a 33% RPS requires tradeoffs between various policy goals and objectives

Criteria	33% RPS Reference Case	High Wind Case	High Out-of- State Delivered Case	High-DG Case
Cost	Θ	•	•	0
Timing	0	\bigcirc	\bigcirc	\bigcirc
GHG Emission Reductions	\bullet	\bullet	•	\bullet
Resource Diversity (Hedging Value)	•		٠	
Local Environmental Quality Air Quality			\bigcirc	
Local Environmental Quality Land Use	0	\bigcirc	\bigcirc	
In-state Economic Development	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Long-Term Transformation		0	0	
Technology Development Risk	0			0
Legend:				

Case performs well

Case is neutral

RPS Objectives Should Be Prioritized

- Many of the policy objectives are mutually exclusive and in conflict with one another. Some of the key questions to help determine a priority preference include:
 - Should California focus public investment and system planning efforts on developing and integrating technologies with significant long-term transformational potential such as solar thermal or solar PV?
 - Should California focus on developing in-state resources? Up to what cost? What is the correct balance between in-state economic development and higher customer costs?
 - Is California willing to delay the 2020 target in order to develop primarily California resources and stimulate new technologies and market transformation?
 - Should California waive renewable energy delivery requirements for out-ofstate resources if it is necessary to meet the 2020 target or pursue a lower cost strategy?
 - Should the CPUC encourage the utilities to procure increased amounts of (currently) high-cost solar PV to mitigate the potential negative impact of delay due to failure of a resource zone?

Mitigating Strategies

- Current procurement path is focused almost solely on central station renewable generation that is dependent on new transmission
- Procurement strategy that adequately considers the time and risk, in addition to price, associated with particular renewable generation resources is needed
- The state may also wish to adopt risk mitigation strategies, such as:
 - Planning for more transmission and generation than needed to reach just 33%
 - Pursuing procurement, such as distributed solar photovoltaics (PV), which is not dependent on new transmission
 - Concentrating renewable development in pre-permitted land that would be set aside for a renewable energy park

More Information

- 33% RPS Report and RPS Calculator:
 - http://www.cpuc.ca.gov/PUC/energy/Renewables/ hot/33implementation.htm
- CPUC RPS Website
 - www.cpuc.ca.gov/renewables

