RURAL WATER COMPANY CONSUMER CONFIDENCE REPORT 2013

Water Supply: Rural Water Company produces groundwater from seven groundwater wells within the community.

Water Quality: All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. Environmental Protection Agency Safe Drinking Water Hotline at 1 (800) 426-4791.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency and the California Department of Public Health (CDPH) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. CDPH regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Rural Water Company routinely checks water quality. Please see the other side of this sheet, which summarizes test results dating from 2005 through 2013. The presence of these substances in the water does not necessarily indicate that the water poses a health risk. CDPH allows us to monitor for certain constituents less than once per year. As a result, some of the data, though representative of the water quality, is more than one year old.

Source Water Assessment: A drinking water source assessment was completed by the CDPH. Rural Water Company sources of supply were considered most vulnerable to the following activities: runoff and leaching from fertilizer use, septic tanks, and sewage, and erosion of natural deposits. You may request a summary of the assessment at the Rural Water Company office, or by calling (805) 481-8432.

Contaminants: Sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;

Inorganic contaminants, such as salts and metals that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and

Radioactive contaminants, which can be naturally occurring, or are the result of oil and gas production and mining activities.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons undergoing chemotherapy, people who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at 1 (800) 426-4791.

About Nitrate: Nitrate in drinking water at levels above 45 ppm is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of an infant's blood to carry oxygen, resulting in a serious illness. Symptoms include shortness of breath and blueness of the skin. Nitrate levels above 45 ppm may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

About Lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and Rural Water Company is home plumbing. responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 15 to 30 seconds or until it becomes cold or reaches a steady temperature before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Questions? For more information about this report, or for any questions related to your drinking water, please call Charles Baker, President, at (805) 481-8432.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entiende bien.

2013 WATER QUALITY INFORMATION - RURAL WATER COMPANY

PRIMARY DRINKING WATE	ER STANDA	RDSMandatory	Health-Related Sta	Indards			
		State	PHG				
-	-	MCL	(MCLG)	GROUNDWATER (c)		MAJOR SOURCES	
Parameter	Units	[MRDL]	[MRDLG]	RANGE	AVERAGE		
Total Coliform Bacteria (a)	NA	see note (a)	(0)	0	0	Naturally present in the environment	
Fluoride	ppm	2.0	1	0.10-0.19	0.14	Erosion of natural deposits; water additive that promotes strong teeth	
Total Trihalomethanes (b)	ppb	80	NA	1.8-3.8	3.8	Byproduct of drinking water chlorination	
Haloacetic Acids (b)	ppb	60	NA	ND-3.2	3.2	Byproduct of drinking water chlorination	
Chlorine	ppm	[4.0]	[4]	0.85-3.41	1.7	Drinking water disinfectant added for treatment	
Arsenic	ppb	10	0.004	ND-2.8	ND	Erosion of natural deposits; runoff from orchards	
Cadmium	ppb	5	0.04	ND-1.3	ND	Internal corrosion of galvanized pipes; erosion of natural deposits	
Gross Alpha	pCi/L	15	(0)	ND-4.3	3.6	Erosion of natural deposits	
Nitrate as NO ₃	ppm	45	45	8-75	27	Leaching from fertilizers, septic tanks, sewage; erosion of natural deposits	
SECONDARY DRINKING W	VATER STAN	NDARDSAesthe	tic Standards				
Chloride	mqq	500	NA	52-72	60	Runoff/leaching from natural deposits: seawater influence	
Color	Unit	15	NA	ND-10	ND	Naturally-occurring organic materials	
Copper	maa	1	NA	ND-62	ND	Corrosion of household plumbing: erosion of natural deposits	
Iron	dqq	300	NA	ND-2400 (d)	343	Leaching from natural deposits; industrial wastes	
Odor	TON	3	NA	ND-4	ND	Naturally-occurring organic materials	
Specific Conductance	µS/cm	1600	NA	320-740	583	Substances that form ions when in water; seawater influence	
Sulfate	ppm	500	NA	9.1-150	82	Runoff/leaching from natural deposits; industrial wastes	
Total Dissolved Solids	ppm	1000	NA	220-510	386	Runoff/ leaching from natural deposits	
Turbidity	NTU	5	NA	ND-9.9	1.4	Soil runoff	
Alkalinity (Total) as CaCO ₂	ppm	NA	NA	34-150	108	Runoff/leaching from natural deposits: seawater influence	
Calcium	ppm	NA	NA	5 3-59	38	Runoff/leaching from natural deposits: seawater influence	
Hardness (Total) as CaCO ₂	ppm	NA	NA	27-250	169	Leaching from natural deposits	
Magnesium	maa	NA	NA	3.2-27	18	Runoff/leaching from natural deposits: seawater influence	
Ha	pH units	NA	NA	6.8-8.1	7.7	Runoff/leaching from natural deposits: seawater influence	
Potassium	maa	NA	NA	2.4-2.7	2.6	Runoff/leaching from natural deposits: seawater influence	
Sodium	maa	NA	NA	49-62	54	Runoff/leaching from natural deposits: seawater influence	
Vanadium	daa	NL = 50	NA	3.9-13	9.4	Runoff/leaching from natural deposits: combustion of fossil fuels	
LEAD AND COPPER SAME						······	
LEAD AND COTTER SAMI			90th Percentile	Number of Sites	PHG		
Parameter	Unite	ΔΙ	Level Detected	Exceeding Al	1110		
Copper (10 samples collected)	nnm	13	0.25		03	Plumbing system corrosion: erosion of natural deposits	
Lead (10 samples collected)	nnh	15	8.8	0	0.0	Plumbing system corrosion; erosion of natural deposits	
ABBREVIATIONS DEFINIT		NOTES	0.0	v	0.2		

Notes:

(a) System Total Coliform Sampling: No more than 1 sample each month may be Total Coliform positive.(b) Compliance based on the running quarterly annual average of distribution system samples.Sampling results from 2013.

(c) Water quality information from individual wells includes samples collected from 2005-2013.(d) Wells containing nitrate were blended with other wells to produce a nitrate below the MCL. Results shown are blended nitrates. Wells are also blended to reduce iron and turbidity, but results are unknown.

Abbreviations

AL = Regulatory Action Level NA = Not Applicable ND = Not Detected NL = Notification Level NTU = Nephelometric Turbidity Units ppb = parts per billion, or micrograms per liter (μg/L) ppm = parts per million, or milligrams per liter (mg/L) μS/cm = microsiemens per centimeter (unit of specific conductance of water) pCi/L = picocuries per liter

Definitions:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that disinfection is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health.

Primary Drinking Water Standard (PDWS): MCLs and MRDLs for contaminants that affect health, along with their monitoring and reporting requirements, and water treatment requirements. Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect health at the MCL level.

2013 WATER QUALITY INFORMATION - RURAL WATER COMPANY - CYPRESS RIDGE

PRIMARY DRINKING WATER STANDARDSMandatory Health-Related Standards										
		State	PHG	GROUNDWATER (c)						
Parameter	Units	MCL	(MCLG)	RANGE	AVERAGE	MAJOR SOURCES				
Total Coliform Bacteria (a)	NA	see note (a)	(0)	0	0	Naturally present in the environment				
Fluoride	ppm	2.0	1	0.11-0.17	0.15	Erosion of natural deposits; water additive that promotes strong teeth				
Total Trihalomethanes (b)	ppb	80	NA	1.8-3.8	3.8	Byproduct of drinking water chlorination				
Haloacetic Acids (b)	ppb	60	NA	ND-3.2	3.2	Byproduct of drinking water chlorination				
Chlorine	ppm	[4.0]	[4]	0.85-3.41	1.7	Drinking water disinfectant added for treatment				
Arsenic	ppb	10	0.004	ND-6.7	3.9	Erosion of natural deposits; runoff from orchards				
Nitrate as NO ₃	ppm	45	45	17-36	27	Leaching from fertilizers and septic tanks; erosion of natural deposits				
SECONDARY DRINKING WATER STANDARDSAesthetic Standards										
Chloride	ppm	500	NA	61-87	69	Runoff/leaching from natural deposits; seawater influence				
Color	Unit	15	NA	ND-5	ND	Naturally-occurring organic materials				
Iron	ppb	300	NA	ND	ND	Leaching from natural deposits; industrial wastes				
Manganese	ppb	500	NA	ND-54	ND	Erosion of natural sources				
Specific Conductance	µS/cm	1600	NA	450-750	560	Substances that form ions when in water; seawater influence				
Sulfate	ppm	500	NA	27-48	34	Runoff/leaching from natural deposits; industrial wastes				
Total Dissolved Solids	ppm	1000	NA	280-480	340	Runoff/ leaching from natural deposits				
Turbidity	NTU	5	NA	ND-0.14	0.1	Soil runoff				
ADDITIONAL PARAMETER	RS (Unregula	ated)								
Alkalinity (Total) as CaCO ₃	ppm	NA	NA	80-130	98	Runoff/leaching from natural deposits; seawater influence				
Boron	ppb	NA	NA	ND	ND	Erosion of natural sources				
Calcium	ppm	NA	NA	22-36	28	Runoff/leaching from natural deposits; seawater influence				
Hardness (Total) as CaCO ₃	ppm	NA	NA	100-170	133	Leaching from natural deposits				
Magnesium	ppm	NA	NA	11-19	15	Runoff/leaching from natural deposits; seawater influence				
рН	pH units	NA	NA	7.7-8.0	7.9	Runoff/leaching from natural deposits; seawater influence				
Potassium	ppm	NA	NA	2.3-2.9	2.5	Runoff/leaching from natural deposits; seawater influence				
Sodium	ppm	NA	NA	48-78	58	Runoff/leaching from natural deposits; seawater influence				
Vanadium	ppb	NL = 50	NA	3.5-11	7.3	Runoff/leaching from natural deposits; combustion of fossil fuels				
LEAD AND COPPER SAM	PLING PROC	GRAM								
			90th Percentile	Number of Sites						
Parameter	Units	AL	Level Detected	Exceeding AL	PHG	MAJOR SOURCES				
Copper (10 samples collected)	ppm	1.3	0.25	0	0.3	Plumbing system corrosion; erosion of natural deposits				
Lead (10 samples collected)	ppb	15	8.8	0	0.2	Plumbing system corrosion; erosion of natural deposits				
ABBREVIATIONS, DEFINI	TIONS, AND	NOTES								
Notes:			Abbreviations							
(a) System Total Coliform Samplin	ng: No more than	1 sample each month	AL = Regulatory Action Level							
(b) Compliance based on the runn	ing quarterly ann	ual average of distribu	NA = Not Applicable							

Sampling results from-2013

(c) Water quality information from individual wells includes samples collected from 2005-2013.(d) Wells containing nitrate were blended with other wells to produce a nitrate below the MCL. Results shown are blended nitrates. Wells are also blended to reduce iron and turbidity, but results are unknown.

AL = Regulatory Action Level NA = Not Applicable ND = Not Detected NL = Notification Level NTU = Nephelometric Turbidity Units

ppb = parts per billion, or micrograms per liter (μ g/L)

ppm = parts per million, or milligrams per liter (mg/L)

 μ S/cm = microsiemens per centimeter (unit of specific conductance of water)

pCi/L = picocuries per liter

Definitions:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that disinfection is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health.

Primary Drinking Water Standard (PDWS): MCLs and MRDLs for contaminants that affect health, along with their monitoring and reporting requirements, and water treatment requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect health at the MCL level.