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	VERIZON REPORT

	APPENDIX F: DOCUMENTATION ON SAMPLE SIZES

	



A. GENERAL FACTS ABOUT SAMPLING

In planning a survey, the issue of sample size is determined by various factors such as expense, the time line for the results, and statistical accuracy. In this appendix, the last issue is considered.

Any question in a survey has two or more responses, say r1, r2, and r3 in the case when there are three responses. When the data is gathered, estimates are made of the fraction of the population for which r1 is the correct response, as well as the fraction for which r2 is correct, etc. It is desired that these estimates be close to the actual population fractions they estimate.

SIMPLE RANDOM SAMPLES

To start with, it is assumed that n respondents have answered the question and that they represent a random sample from the population. If p1 is the fraction of the population for which r1 is the correct response, then the variance of the difference between p1 and the fraction of respondents who answered r1 is just p1(1-p1)/n. (A similar equation holds for r2, and for questions with any number of responses.)

It is now easy to estimate how accurate the estimate for p1 (and for p2, etc.) will be as a function of n and p1. Let S1 stand for the difference between the estimate p1 and its sample estimate based on results that will be collected from the prospective sample now in the design phase. S1 is just the error of the estimate for p1. Suppose it is desired that this error is greater in absolute value than some level x only one time out of twenty, i.e. that with probability less than 1/20. (Another way of saying this is that the sample estimate for p1 is accurate to within x at 95% confidence.) Assuming that n is big enough to justify the use of normal tables, one can write the following equation between x and n:

(1) (1.96)*sqrt(p1(1-p1))= x*sqrt(n)

To understand this equation note that a standard normal random variable (with mean 0 and variance 1) has probability .05 of exceeding 1.96 in absolute value. The choice of the desired probability is a matter of convention. What is important is how x varies with p1 in this equation. In fact, when p1 is 0 then x is 0. (one can interpret x as the precision of the sample estimate for p1.) As p1 increases from 0 to .5, x increases from 0 to 1.65/(2*sqrt(n)). As p1 increases from.5 to 1, x decreases from 1.65/(2*sqrt(n)) to 0. The conclusion is that the level of error is highest when p1 is .5, if the probability of exceeding that level is fixed. The same holds true for p2, etc.

STRATIFIED SAMPLES

It is usually the case that survey samples are not drawn randomly from the population at large, but rather the population is divided into segments called strata and simple random samples are drawn independently from each strata. This is done in order to increase the accuracy of the resulting estimates. In the case of Pacific Bell, the strata were defined by the number of access lines in each customer’s exchange. There were four strata as explained in Section III of the report. Random samples were drawn from each strata, and the results from the respondents were aggregated for each strata. The final estimate was a weighted average of the strata estimates, where each strata weight is the fraction of access lines pertaining to that strata. Thus the variance of the final estimate, (which is a weighted average) is smaller than it would have been if the same number n of respondents had not been categorized into strata.

The factor by which the variance is decreased is simply the sum of the squares of the four strata weights. In the case of Verizon, this sum is simply 0.4. Thus the equation corresponding to (1) in the case of a stratified sample is rewritten as follows:

(2) (1.96)*sqrt(.4*(p1(1-p1))= x*sqrt(n)

The extra factor of .4 in (2) as compared with (1) is sometimes called the design factor. In this case the design factor allows the sample size n to be reduced by the .4 while still achieving the same precision x as in (1).

B. ESTIMATING SAMPLE SIZES

Equation (2) can be applied in the context of estimating how large a sample is needed to derive satisfactory results from a survey. In the case of the quality of service survey in Appendix A, there are many questions with many possible responses. It is desired that the results for each response to each question be accurate. This desire must be translated into statistical terms and satisfied in a realistic manner.

A basic problem is that on an intuitive level significance is evaluated in relative rather than absolute terms. That is, the difference between 3% and 4% might seem to be significant on an intuitive level, while the difference between 50% and 51% might not. 

In the planning phase for a survey sample, one must attempt to give reasonable estimates for adequate sample sizes, having in mind the considerations above. Looking at the results from the 1991 quality of service sample, it is known that average response percentage is larger than 25%, where the average is taken over all question and all responses. Using the number 25% (i.e. 0.25) as a base for the calculation of what relative accuracy is needed, and the requirement that a 10% relative error rate be achieved with a confidence level of 95%, one substitutes 0.25/10=.025 for x in equation (2). The resulting sample size is 460.

C. COMPARING SURVEY RESULTS

Suppose that it is known that the results of the prospective survey will be compared with the results of a similar survey done in the past. In that case equation (1) has a useful reinterpretation. Let q1 stand for the estimated value of p1 obtained from the past survey, and let R1 stand for the difference between q1 and the sample estimate for p1 that will be obtained in the planned survey. (By definition, the estimate that will be obtained is an unknown random quantity, while q1 is a known quantity which is being treated as no longer random.) Thus Equation (1) holds for R1 just as it did for S1, under the hypothesis that the population values of p1, p2, etc. have not changed over time.

It is now possible to interpret the level x in equation (1) in an operational way. Namely x, is just the smallest absolute difference (between q1 and the estimate for p1 to be obtained from the prospective survey) which will yield a p value less than .1 for a two sided test comparing the results of the past and the prospective survey. (See Appendix E for a discussion of p values.)

In fact, suppose that it is planned to test whether the value of p1 has stayed the same or decreased over time. (For the sake of definiteness, one may assume that the result r1 corresponds to a bad result in terms of service quality, i.e. if p1 has decreased over time or stayed the same then service quality has improved or stayed the same.) It is natural to test this hypothesis by comparing R1 with some level x and to reject the hypothesis if R1 exceeds x. Since the statistical test is now one sided, the constant 1.96 in (1) will be replaced with 1.28 in order that the probability of falsely rejecting the hypothesis be 0.1 (as was done in the analysis for Appendix D.) It is simplest to rewrite (2) with x replaced by y as well.

(3) (1.28)*sqrt(.4*p1(1-p1))= y*sqrt(n)

In (3) the precision y is the smallest difference between the past and the prospective survey that will be significant at the 0.1 level under a one sided test. If n is fixed this value of y is largest when p1=1/2. Setting p1=1/2 in (3) yields the approximate relation 

(4) 0.4=y*sqrt(n)

So if n=400, a difference of 2% in the appropriate direction between the past survey result and the prospective survey result will be found significant at the 0.1 level when the 1991 result is 50%. As a simple example, suppose that the percentage of respondents choosing the response corresponding to bad service was 50% in the 1991 survey. Suppose also that 52% of the respondents to that question in the 2001 survey choose the response corresponding to bad service. Then the difference would be declared significant if the number of respondents answering that question in the 2001 survey was 400 or more. 

