











ANSI Std C12.21-19987


PROTOCOL SPECIFICATION FOR 


TELEPHONE MODEM COMMUNICATION 
































Copyright © 19987 by the National Electrical Manufacturers Association


1300 North 17th Street, Suite 1847


Rosslyn, VA 22209, USA


All rights reserved



































88

















This is an unapproved draft of a proposed ANSI Standard, subject to change. Permission is hereby granted for ANSI Standards Committee participants to reproduce this document for purposes of ANSI standardization activities.  Use of information contained in this unapproved draft is at your own risk.














Modified April 1, 1998 December 16, 1997





Standard Version 0.0





Document Version 1.121.10


�
TABLE OF CONTENTS





� TOC \o �1. SCOPE	� GOTOBUTTON _Toc413829675  � PAGEREF _Toc413829675 �4444��


2. REFERENCES	� GOTOBUTTON _Toc413829676  � PAGEREF _Toc413829676 �4444��


3. DEFINITIONS	� GOTOBUTTON _Toc413829677  � PAGEREF _Toc413829677 �4444��


3.1. DOCUMENT SYNTAX	� GOTOBUTTON _Toc413829678  � PAGEREF _Toc413829678 �4444��


4. PROTOCOL DETAILS	� GOTOBUTTON _Toc413829679  � PAGEREF _Toc413829679 �5665��


4.1. ORDER OF TRANSMISSION	� GOTOBUTTON _Toc413829680  � PAGEREF _Toc413829680 �5665��


4.2. LAYER 7 - APPLICATION LAYER	� GOTOBUTTON _Toc413829681  � PAGEREF _Toc413829681 �6776��


4.2.1.4.2.2. LANGUAGE - Protocol Specification for Electric Metering (“PSEM”)	� GOTOBUTTON _Toc413829682  � PAGEREF _Toc413829682 �6776��


4.2.1.1.4.2.2.1 Request Codes	� GOTOBUTTON _Toc413829683  � PAGEREF _Toc413829683 �6776��


4.2.1.2.4. 4.2.2.2 .Response Codes	� GOTOBUTTON _Toc413829684  � PAGEREF _Toc413829684 �8996��


4.2.1.3. 4.2.2.3 Identification Service	� GOTOBUTTON _Toc413829685  � PAGEREF _Toc413829685 �8998��


4.2.1.4. 4.2.2.4. Read Service	� GOTOBUTTON _Toc413829686  � PAGEREF _Toc413829686 �910109��


4.2.1.5. 4.2.2.5. Write Service	� GOTOBUTTON _Toc413829687  � PAGEREF _Toc413829687 �910109��


4.2.1.6. 4.2.2.6. Logon Service	� GOTOBUTTON _Toc413829688  � PAGEREF _Toc413829688 �910109��


4.2.1.7. 4.2.2.7. Security Service	� GOTOBUTTON _Toc413829689  � PAGEREF _Toc413829689 �910109��


4.2.1.8. 4.2.2.8. Logoff Service	� GOTOBUTTON _Toc413829690  � PAGEREF _Toc413829690 �910109��


4.2.1.9. 4.2.2.9. Authenticate service	� GOTOBUTTON _Toc413829691  � PAGEREF _Toc413829691 �910109��


4.2.1.10. 4.2.2.10. Negotiate Service	� GOTOBUTTON _Toc413829692  � PAGEREF _Toc413829692 �10111110��


4.2.1.11. 4.2.2.11. Wait Service	� GOTOBUTTON _Toc413829693  � PAGEREF _Toc413829693 �10111110��


4.2.1.12. 4.2.2.12. Terminate Service	� GOTOBUTTON _Toc413829694  � PAGEREF _Toc413829694 �10111110��


4.2.1.13. 4.2.2.13. Timing Setup Service	� GOTOBUTTON _Toc413829695  � PAGEREF _Toc413829695 �11121210��


4.2.1.14. 4.2.2.14. Disconnect Service	� GOTOBUTTON _Toc413829696  � PAGEREF _Toc413829696 �11121211��


4.3. LAYER 6 - PRESENTATION LAYER	� GOTOBUTTON _Toc413829697  � PAGEREF _Toc413829697 �13141412��


4.4. LAYER 5 - SESSION LAYER	� GOTOBUTTON _Toc413829698  � PAGEREF _Toc413829698 �13141412��


4.5. LAYER 4 - TRANSPORT LAYER	� GOTOBUTTON _Toc413829699  � PAGEREF _Toc413829699 �13141412��


4.6. LAYER 3 - NETWORK LAYER	� GOTOBUTTON _Toc413829700  � PAGEREF _Toc413829700 �13141412��


4.7. LAYER 2 - DATA LINK LAYER	� GOTOBUTTON _Toc413829701  � PAGEREF _Toc413829701 �13141412��


4.7.1. BASIC DATA INFORMATION	� GOTOBUTTON _Toc413829702  � PAGEREF _Toc413829702 �13141412��


4.7.1.1. Fixed Settings	� GOTOBUTTON _Toc413829703  � PAGEREF _Toc413829703 �13141412��


4.7.1.2. Variable Settings	� GOTOBUTTON _Toc413829704  � PAGEREF _Toc413829704 �14151512��


4.7.2. PACKET DEFINITION	� GOTOBUTTON _Toc413829705  � PAGEREF _Toc413829705 �14151513��


4.7.3. CRC SELECTION	� GOTOBUTTON _Toc413829706  � PAGEREF _Toc413829706 �15161614��


4.7.4. ACKNOWLEDGMENT	� GOTOBUTTON _Toc413829707  � PAGEREF _Toc413829707 �15161614��


4.7.5. RETRY ATTEMPTS	� GOTOBUTTON _Toc413829708  � PAGEREF _Toc413829708 �15161614��


4.7.6. TIMEOUTS	� GOTOBUTTON _Toc413829709  � PAGEREF _Toc413829709 �15171714��


4.7.6.1. Channel Traffic Time-out	� GOTOBUTTON _Toc413829710  � PAGEREF _Toc413829710 �16171714��


4.7.6.2. Inter-Character Time-out	� GOTOBUTTON _Toc413829711  � PAGEREF _Toc413829711 �16171714��


4.7.6.3. Response Time-out	� GOTOBUTTON _Toc413829712  � PAGEREF _Toc413829712 �16171715��


4.7.7. TURN AROUND DELAY	� GOTOBUTTON _Toc413829713  � PAGEREF _Toc413829713 �16171715��


4.7.8. COLLISION	� GOTOBUTTON _Toc413829714  � PAGEREF _Toc413829714 �16171715��


4.7.9. DUPLICATE PACKETS	� GOTOBUTTON _Toc413829715  � PAGEREF _Toc413829715 �16171715��


4.8. LAYER 1 - PHYSICAL LAYER	� GOTOBUTTON _Toc413829716  � PAGEREF _Toc413829716 �16171715��


ANNEX A - PROTOCOL SYNTAX	� GOTOBUTTON _Toc413829717  � PAGEREF _Toc413829717 �17181816��


ANNEX B - COMMUNICATION EXAMPLE (Layer 7 & Layer 2)	� GOTOBUTTON _Toc413829718  � PAGEREF _Toc413829718 �20212118��


ANNEX C	� GOTOBUTTON _Toc413829719  � PAGEREF _Toc413829719 �Error! Bookmark not defined.Error! Bookmark not defined.Error! Bookmark not defined.21��


ANNEX D - SERVICE SEQUENCE STATE CONTROL	� GOTOBUTTON _Toc413829720  � PAGEREF _Toc413829720 �22��


ANNEX E - MODIFICATIONS AND EXTENSIONS TO C12.19	� GOTOBUTTON _Toc413829721  � PAGEREF _Toc413829721 �24��


ANNEX E1 - TABLE 03 ED_MODE STATUS TABLE	� GOTOBUTTON _Toc413829722  � PAGEREF _Toc413829722 �25��


ANNEX E3 - DECADE 90: Telephone Control Tables	� GOTOBUTTON _Toc413829723  � PAGEREF _Toc413829723 �28��


TABLE 90 Dimension Telephone Table	� GOTOBUTTON _Toc413829724  � PAGEREF _Toc413829724 �28��


TABLE 91 Actual Telephone Table	� GOTOBUTTON _Toc413829725  � PAGEREF _Toc413829725 �31��


TABLE 92 Global Parameters Table	� GOTOBUTTON _Toc413829726  � PAGEREF _Toc413829726 �33��


TABLE 93 Originate Communication Parameters	� GOTOBUTTON _Toc413829727  � PAGEREF _Toc413829727 �34��


TABLE 94 Originate Schedule Table	� GOTOBUTTON _Toc413829728  � PAGEREF _Toc413829728 �36��


TABLE 95 Answer Communication Parameters	� GOTOBUTTON _Toc413829729  � PAGEREF _Toc413829729 �39��


TABLE 96 Call Purpose	� GOTOBUTTON _Toc413829730  � PAGEREF _Toc413829730 �41��


TABLE 97 Call Status	� GOTOBUTTON _Toc413829731  � PAGEREF _Toc413829731 �42��


ANNEX E2 - TABLE 07 - PROCEDURE 20 Initiate an Immediate Call	� GOTOBUTTON _Toc413829732  � PAGEREF _Toc413829732 �43��


ANNEX E4 - History & Event Log Codes	� GOTOBUTTON _Toc413829733  � PAGEREF _Toc413829733 �44��


ANNEX F - CRC EXAMPLES	� GOTOBUTTON _Toc413829734  � PAGEREF _Toc413829734 �45��


Trace	� GOTOBUTTON _Toc413829735  � PAGEREF _Toc413829735 �45��


C Code Example	� GOTOBUTTON _Toc413829736  � PAGEREF _Toc413829736 �46��


ANNEX G - ERROR HANDLING	� GOTOBUTTON _Toc413829737  � PAGEREF _Toc413829737 �47��


ANNEX E5 - DEFAULT SETS FOR DECADE TABLES	� GOTOBUTTON _Toc413829738  � PAGEREF _Toc413829738 �49��


ANNEX E6 - INDICIES FOR PARTIAL TABLE ACCESS	� GOTOBUTTON _Toc413829739  � PAGEREF _Toc413829739 �50��


ANNEX H - DATA ENCRYPTION STANDARD	� GOTOBUTTON _Toc413829740  � PAGEREF _Toc413829740 �53��


Usage	� GOTOBUTTON _Toc413829741  � PAGEREF _Toc413829741 �53��


Legal Issues	� GOTOBUTTON _Toc413829742  � PAGEREF _Toc413829742 �53��


Implementation	� GOTOBUTTON _Toc413829743  � PAGEREF _Toc413829743 �54��


Code Example	� GOTOBUTTON _Toc413829744  � PAGEREF _Toc413829744 �57��


Trace Example	� GOTOBUTTON _Toc413829745  � PAGEREF _Toc413829745 �60��


ANNEX I - I COMMAND OPERATIONAL DESCRIPTION	� GOTOBUTTON _Toc413829746  � PAGEREF _Toc413829746 �61��


The problem	� GOTOBUTTON _Toc413829747  � PAGEREF _Toc413829747 �61��


The solution	� GOTOBUTTON _Toc413829748  � PAGEREF _Toc413829748 �61��


�


�



� AUTONUMLGL �1.� SCOPE





This document details the criteria required for communications with an electric power metering device by a utility host via a modem connected to the switched telephone network. The utility host could be a laptop or portable computer, a master station system, an electric a power metering device, or some other electronic communications device.





This standard does not specify the implementation requirements of the telephone switched network to the modem, nor does it include definitions for the establishment of the communication channel.





This document provides details for an implementation of the OSI 7-layer model.





The protocol specified in this document was designed to transport data in table format. The table definitions are referenced in Section 2.0, References, and Annex E of this document.





This document specifies the differences between ANSI Std C12.18-1996, Protocol Specification for ANSI Type 2 Optical Port and ANSI Std C12.19-1997, Utility Industry End Device Data Tables and those features and services required to describe a protocol specification for Telephone Modem Communications.





� AUTONUMLGL �2.� REFERENCES





ANSI Std C12.18-1996:	Protocol Specification for ANSI Type 2 Optical Port





ISO 7498/1:	OSI Reference Model





ISO 3309-197993(E):	Information technology - Telecommunications and information exchange between systems - High-level data link control (HDLC) procedures - Frame Structure, Annex A Explanatory Notes On Implementation of the Frame Checking Sequence





ANSI Std C12.19-1997:	Utility Industry End Device Data Tables.





ANSI Std X3.92-1981:	Data Encryption Algorithm





� AUTONUMLGL �3.� DEFINITIONS





For the purposes of this document, the following definitions are made for terms and syntax used throughout this document.





3.1 PSEM:	Protocol Specification for Electricity Metering as referenced in C12.18-1996





3.2Table:	Functionally related data elements, grouped together into a single data structure for transport as defined by ANSI standard C12.19-19967





3.3� AUTONUMLGL �3.1.� DOCUMENT SYNTAX





Document syntax is identical to that of C12.18-1996. 


�



� AUTONUMLGL �4.� PROTOCOL DETAILS





Following the guidelines established by the OSI seven layer model, the protocol described in this document provides three functions. These are:





1) the modification of the communication channel 


2) the transport of information to and from the metering device


3) the orderly closure of the communication channel





Three layers are used to provide these communication capabilities. These are the Physical, Data Link and Application layers.





This standard does not specify the implementation requirements of the telephone switched network to the modem, nor does it include definitions for the establishment of the communication channel. The communication channel is considered available once the telephone connection has been successfully established and modems have synchronized. The PSEM Identification Service is required to establish the protocol version and revision in use. Certain communication parameters may be modified through the use of the PSEM Negotiate Service in the application layer. This service is optional and if not implemented in the metering device or not used during actual communications, the communication channel parameters will remain at the default settings specified by this document. Device implementers are strongly encouraged to implement this optional Application service.





Once the data link is established, the application layer provides Logon, Security and Logoff Services for session activation: access control and deactivation; read and write services for issuing data transmission requests; Terminate Service for returning to the base state; Disconnect Service for shutdown of the communication channel; and a response structure that provides information regarding the success or failure of the service requests.





An example of a typical communications session would consist of the following services with appropriate responses, in the order listed: Identification; Negotiate; Logon; Security; Read (zero or more); Write (zero or more); Logoff; and Disconnect. Note that this brief example does not detail the packet structure nor other aspects of the protocol. For a more detailed example of a typical communications session reference Annex B, Communication Example.





� AUTONUMLGL �4.1.� ORDER OF TRANSMISSION





Order of transmission is identical to that of C12.18-1996. 


�



� AUTONUMLGL �4.2.� LAYER 7 - APPLICATION LAYER





The application layer provides a minimal set of services and data structures required to support electronic metering end devices for purposes of configuration, programming and information retrieval. 





Layer 7 shall be defined as the ANSI Std C12.18-1996 Protocol Specification for ANSI Type 2 Optical Port, Layer 7, except for the specific items mentioned in the following subsections of 4.2.





4.2.1  Data Structure 





This protocol shall transport table structures. The table specifications this standard was designed to transport are referenced in Clause 2 and Annex E of this document.





� AUTONUMLGL �4.2.1.� 4.2.2. LANGUAGE - Protocol Specification for Electric Metering (“PSEM”)





The language PSEM has been designed to provide an interface between a utility host and a metering device the metering device and any other device over a point-to-point communication medium. The PSEM language consists of 1211 services. Each service consists of a request and a response. Each of these requests and responses is described in the following service sections. Note that starred requests are revised from C12.18-1996, double starred requests are new for C12.21.





<requests>	::=	<ident> |	{ *   Identification request }


		<read> |	{    Read request }


		<write> |	{    Write request }


		<logon> |	{    Logon request }


		<security> |	{    Security request }


		<logoff> |	{ *  Logoff request }


		<negotiate> |	{    Negotiate request }


		<wait> |	{    Wait request }


		<terminate> |	{ *  Terminate request }


		<timing_setup> |	{ ** Timing setup request }


		<disconnect> |	{ ** Disconnect request }


		<authenticate>	{ ** Authenticate request }


<responses>	::=	<ident_r> |	{ *  Identification response }


		<read_r > |	{    Read response }


		<write_r > |	{    Write response }


		<logon_r > |	{    Logon response }


		<security_r> |	{    Security response }


		<logoff_r > |	{ *  Logoff response }


		<negotiate_r > |	{    Negotiate response }


		<wait_r > |	{    Wait response }


		<terminate_r > |	{ *  Terminate response }


		<timing_setup_r> |	{ ** Timing setup response }


		<disconnect_r> |	{ ** Disconnect response }


		<authenticate_r>	{ ** Authenticate response }





Note:  * Definition or content revised from C12.18-1996. 


	 ** New in C12.21.





� AUTONUMLGL �4.2.1.1.� 4.2.2.1 Request Codes





PSEM requests always include a one byte request code. Code numbers are assigned as follows:





00H-1FH	Codes shall not be used to avoid confusion with response codes


20H-7FH	Codes are available for use within ANSI C12 protocols


80H-FFH	Codes shall be reserved for protocol extensions


�



� AUTONUMLGL �4.2.1.2.� 4. 4.2.2.2 .Response Codes





Response codes are identical to those specified in C12.18-1996.





� AUTONUMLGL �4.2.1.3.�  4.2.2.3 Identification Service





This service shall be the first service issued once the physical connection is established or after a terminate service. The service returns a code identifying the reference standard, and the version and revision of the reference standard implemented,. and an optional feature list.





Request:





<ident>	::=	20H





Response:





The responses <err>, <bsy>, and <isss> indicate a problem with the received service request. The response <ok> indicates the identification service request was accepted and the standard, version, revision and optional feature list are included in the response.





<ident_r>	::=	<err> | <bsy> | <isss> |


		<ok> <std> <ver> <rev> <feature>* <end_of_list>





<std>	::=	<byte>	{Code identifying reference standard. The codes are defined as follows:


			00H	= ANSI C12.18


			01H	= For use by Industry Canada 


			02H 	= ANSI C12.21


			03H-FFH	= Reserved }





<ver>	::=	<byte>	{Binary representation of the referenced standard version number to the left of the decimal point. This value shall be 1.}





<rev>	::=	<byte>	{Binary representation of the referenced standard version number to the right of the decimal point. This value shall be 0.}





<feature>	::=	<auth_ser> |	{Features available}


		<auth_ser_ticket>





<end_of_list>	::=	00H	{End of list indicator.}





<auth_ser>	::=	01H <auth_type> <auth_alg_id>


			{If present in the feature list, authentication is supported by the end device.}





<auth_ser_ticket>	::=	02H <auth_type> <auth_alg_id> <ticket_length> <ticket>





<auth_type>	::=	<byte>	{Authentication type identifier.


			Bit 0: SESSION_LEVEL_AUTHENTICATION


			If true "Authentication Service" is supported.


			Bits 1..7 are reserved, must be zero.}





<auth_alg_id>	::=	<byte>	{The authentication algorithm used.


			00H = ANSI Std X3.92-1981:	Data Encryption Algorithm Data Encryption Standard}





<ticket_length>	::=	<byte>	{Length of <ticket>, in bytes.}





<ticket>	::= <byte>+	{Value use by the authentication algorithm.}





� AUTONUMLGL �4.2.1.4.�  4.2.2.4. Read Service





The read service is identical to that in C12.18-1996.





� AUTONUMLGL �4.2.1.5.�  4.2.2.5. Write Service





The write service is identical to that in C12.18-1996.





� AUTONUMLGL �4.2.1.6.�  4.2.2.6. Logon Service





The logon service is identical to that in C12.18-1996.





� AUTONUMLGL �4.2.1.7.�  4.2.2.7. Security Service





The security service is identical to that in C12.18-1996.





� AUTONUMLGL �4.2.1.8.�  4.2.2.8. Logoff Service





The logoff service provides for an orderly shutdown of the session established by the logon service. 





Request:





Following a logoff service request the communication channel will return to the ID state, retaining the parameters previously established. The communication channel is disconnected by either physical disruption of the channel or by the disconnect service.





<logoff>	::=	52H





Response:





The responses <err> <bsy>, and <isss> indicate a problem with the received service request.





The response <ok> indicates the acceptance of the logoff service and the cessation of the session established by the logon service. Prior to further data transfers with the metering device, the logon service must be reissued.





<logoff_r>	::=	<err> |<bsy> |<isss> |<ok>





� AUTONUMLGL �4.2.1.9.�  4.2.2.9. Authenticate service





The authenticate service is used on behalf of the security service when a higher level of security is required desired. The intent of this service is to provide a two way authentication with playback rejection at the session level. The contents of the <auth_request> and <auth_response> fields are a function of the authentication algorithm used. This algorithm is returned by the identification service response.





Request:





<authenticate>	::= 53H <auth_req_length> <auth_request>





<auth_req_length>	::= <byte>	{<auth_req_length> number of bytes of the <auth_request> field.}





<auth_request>	::= <byte>+	{Information used to authenticate the initiator of this service.}





Response:





The responses <err>, <bsy>, and <isss> indicate a problem with the received service request.





The response <isc> indicates the authentication failure of the requester.





The response <ok> indicates the authentication service was successfully completed and the access permission associated with the <auth_request> field were  was granted.





<authenticate_r>	::= 	<err> |


		<bsy> |


		<isc> |


		<isss> |


		<ok> <auth_res_length> <auth_response>





<auth_res_length>	::=	<byte>	{<auth_res_length> number of bytes of the <auth_response> field.}





<auth_response>	::=	<byte>+	{Information used to authenticate the recipient of this service.} 





� AUTONUMLGL �4.2.1.10.�  4.2.2.10. Negotiate Service





The negotiate service is identical to that in C12.18-1996. 





� AUTONUMLGL �4.2.1.11.�  4.2.2.11. Wait Service





The wait service is identical to that in C12.18-1996.





� AUTONUMLGL �4.2.1.12.�  4.2.2.12. Terminate Service





The terminate service provides for an immediate transfer to the base state and restablishment of all default parameters.





Request:





<terminate>	::=	2221H





Response:





The response <err> indicates a problem with the received service request and the channel remains open.





The response <ok> indicates the service request was accepted and the channel will return to default settings as stated in Section 4.73.4.1.2, VariableDefault Settings, upon receipt of a positive acknowledgment.





<terminate_r>	::=	<err> |


		<ok> 





� AUTONUMLGL �4.2.1.13.�  4.2.2.13. Timing Setup Service





The timing setup service provides the mechanism for reconfiguring time-outs, delays and retry attempts from the default values specified in this document.





This service is initiated by the utility host. It is optional and, if not used, the communications channel operates with the default parameters established by this document.





Request:





<timing_setup>	::=	71H <traffic> <inter_char> <resp_to>


		<nbr_retries>





<traffic>	::=	<byte>	{ Channel traffic time-out in seconds }





<inter_char>	::=	<byte>	{ Inter-character time-out in seconds }





<resp_to>	::=	<byte>	{ Response time-out in seconds }





<nbr_retries>	::=	<byte>	{ Maximum number of retry attempts }





Response:





The responses <err>, <sns>, <bsy>, and <isss> indicate a problem with the received service request and that the timer parameters will maintain their current settings.





The response <ok> indicates the service request was accepted and the new settings now apply. The data following the <ok> indicates the setting that will apply upon positive acknowledgment. 





<timing_setup_r>	::= 	<err> |


		<sns> |


		<bsy> |


		<isss> |


		<ok> <traffic> <inter_char> <resp_to>


		<nbr_retries>





� AUTONUMLGL �4.2.1.14.�  4.2.2.14. Disconnect Service





This service is used for immediate disconnection of the communication channel. 





Request:





This service should be used for reasons such as excessive errors, security issues, internal error conditions, end of session, or other reasons as set by the device manufacturer.





<disconnect>	::=	22H





Response:





The response <err> indicates a problem with the received service request and the channel remains open.





The response <ok> indicates the service request was accepted and the channel will be disconnected.





<disconnect_r>	::=	<err> |


		<ok> 


�



� AUTONUMLGL �4.3.� LAYER 6 - PRESENTATION LAYER





NULL LAYER





The end device will not provide queuing capabilities for service requests.





� AUTONUMLGL �4.4.� LAYER 5 - SESSION LAYER





NULL LAYER





Communications with the end device over the communications path will be connection oriented and consist of a single session. The session is defined to begin with the acceptance of the logon service and terminates with the acceptance of either the logoff, terminate or the disconnect service.





� AUTONUMLGL �4.5.� LAYER 4 - TRANSPORT LAYER





NULL LAYER





� AUTONUMLGL �4.6.� LAYER 3 - NETWORK LAYER





NULL LAYER





� AUTONUMLGL �4.7.� LAYER 2 - DATA LINK LAYER





Services of upper layers are transported in one or more packets. Each packet is variable in length but cannot exceed a maximum packet size. The maximum packet size has a default value when the communication channel is opened. The maximum packet size can be changed through the use of the negotiate service.





For each packet received, a positive or negative acknowledgment is sent by the target. This acknowledgment consists of a single byte transmitted outside of the packet structure. If the requester does not receive an acknowledgment before the Response Timeout, or a negative acknowledgment is received, the same packet is re-transmitted up to the current maximum number of negotiated retry attempts. After the final retry attempt, the requester should assume termination has occurred.





� AUTONUMLGL �4.7.1.� BASIC DATA INFORMATION





Communication channel settings are specified below.





� AUTONUMLGL �4.7.1.1.� Fixed Settings





DATA FORMAT�
8 data bits, 1 start bit, 1 stop bit, no parity�
�
DATA TYPE�
Asynchronous, serial bit (start - stop), half duplex operation, full duplex setup�
�
DATA POLARITY�
Start bit, space, logical 0


Stop bit, mark, logical 1, quiescent state�
�
DATA RATE�
The transmitting speed is determined when connection is established.�
�
TURN-AROUND DELAY�
0 microseconds None Required�
�



� AUTONUMLGL �4.7.1.2.� Variable Settings





Default settings apply at the initiation of communication. Most settings may be changed through the negotiate service and the timing service. Channel settings will return to defaults as a result of the terminate service or channel traffic time-out.





Setting�
Default Value�
Changed by�
�
NUMBER OF PACKETS�
1 �
Negotiate�
�
PACKET SIZE�
64 bytes�
Negotiate�
�
CHANNEL TRAFFIC TIMEOUT�
30 seconds�
Timing Setup�
�
INTER-CHARACTER TIMEOUT�
1 second�
Timing Setup�
�
RESPONSE TIMEOUT�
4 seconds�
Timing Setup�
�
RETRY ATTEMPTS�
3�
Timing Setup�
�



� AUTONUMLGL �4.7.2.� PACKET DEFINITION





<packet>	::=	<stp> <identity> <ctrl> <seq_nbr> <length> <data> <crc>





<stp>	::=	EEH	{ Start of packet character. }





<identity>	::=	<byte>	{End device (meter, etc.) identity. It identifies the end device in both the request and response packets. In requests this byte may be set to 00H as a universal identity. All devices shall respond to this identifier value as a minimum. This value (00H )should not be used in a multidrop environment. The individual end device identity must be in the range 01H to FFH.}





<ctrl>	::=	<byte>	{ Control field.


			Bit 7. If true (1H) then this packet is part of a multiple packet transmission.


			Bit 6. If true (1H) then this packet is the first packet of a multiple packet transmission.


			Bit 5. Represents a toggle bit to reject duplicate packets. This bit is toggled for each new packet sent. Retransmitted packets keep the same state as the original packet sent. 


			Bits 0 to 4, Reserved.}





<seq_nbr>	::= <byte>	{Number that is decremented by one for each new packet sent. The first packet in a multiple packet transmission shall have a <seq_nbr> equal to the total number of packets minus one. A value of zero in this field indicates that this packet is the last packet of a multiple packet transmission. If only one packet is in a transmission, this field shall be set to zero.}





<length>	::=	<word16>	{ Number of bytes of <data> in packet. }





<data>	::=	<byte>+	{ <length> number of bytes of actual packet data. This value is limited by the maximum packet size minus the packet overhead of 8 bytes. This value can never exceed 8183. }





<crc>	::=	<word16>	{ HDLC implementation of the polynomial X16 + X12 + X5 + 1}





� AUTONUMLGL �4.7.3.� CRC SELECTION





The CRC selected for implementation is the polynomial X16 + X12 + X5 + 1. The method for calculation and insertion is the HDLC standard per ISO 3309-1993(E) Annex A “EXPLANATORY NOTES ON IMPLEMENTATION OF THE FRAME CHECKING SEQUENCE”.





In the PSEM frame, there is no opening flag as referenced in ISO 3309-1993 Annex A. The PSEM start of packet character EE is included in the CRC calculation. The result of the CRC calculation shall be transmitted least significant byte first per the ISO 3309 Annex. See Aannex FE for examples of computation and coding.





� AUTONUMLGL �4.7.4.� ACKNOWLEDGMENT





A positive or negative acknowledgment is used by the communicating devices to indicate either acceptance or rejection of a packet.





An <ack> is issued by the receiving device to the transmitting device for each packet received that meets the constraints established by this section.





<ack>	::=	06H





A <nak> is issued by the receiving device to the transmitting device for each packet received that does not meet the constraints established by this section. Examples of problems with received packets indicated by a <nak> response include CRC errors, packet structure errors, incorrect bit patterns and missing characters.





<nak>	::=	15H





� AUTONUMLGL �4.7.5.� RETRY ATTEMPTS





The same packet shall be retransmitted if a <nak> is received, an invalid character is received (neither an ACK nor a NAK), or the response time-out occurs.





After the failure of the final retry attempt, the following actions will occur:








If the utility host is the requestor, then the host returns to the base state but may or may not terminate the call.





If the end device is the requestor, the end device will terminate the call.





� AUTONUMLGL �4.7.6.� TIMEOUTS





� AUTONUMLGL �4.7.6.1.� Channel Traffic Time-out





The end device will terminate communications after waiting some period of time for a valid packet or acknowledgment. This period of time, is defined as the channel traffic time-out. 





� AUTONUMLGL �4.7.6.2.� Inter-Character Time-out





The recipient of the packet must handle the case when the end of a packet is lost. Inter-character time-out is defined as the minimum amount of time the recipient shall wait between characters within a packet when receiving data over the communication channel. The recipient shall wait at least this amount of time before it ceases to wait for the remainder of the packet and sends a <nak>.





� AUTONUMLGL �4.7.6.3.� Response Time-out





The sender of the packet must handle the case when the acknowledgment or negative acknowledgment is lost. Response time-out is defined as the minimum amount of time the sender shall wait after a packet is sent to receive an acknowledgment over the communication channel. If this amount of time elapses, the sender will send the packet again.





� AUTONUMLGL �4.7.7.� TURN AROUND DELAY





The turn around delay is the minimum delay the recipient must wait after receiving a packet and before sending a positive or negative acknowledgement.





� AUTONUMLGL �4.7.8.� COLLISION





In the event of a collision (utility host and end device are transmitting at the same time), the end device may cease transmission and wait for the transmission from the utility host. 








� AUTONUMLGL �4.7.9.� DUPLICATE PACKETS





A duplicate packet is defined as a packet whose identity, toggle bit and valid CRC are identical to those of the immediate previous packet. If a duplicate packet is received by the target device, the target should disregard the duplicate packet and return an <ack>. At the start of session, the toggle bit in the first packet may assume either state.





� AUTONUMLGL �4.8.� LAYER 1 - PHYSICAL LAYER





The physical layer is not defined in this document.


�



ANNEX A - PROTOCOL SYNTAX





INFORMATIVE





These are additions to ANSI C12.18, Annex A.





A.2 LAYER 7 SYNTAX





<authenticate>	::= 53H <auth_req_length> <auth_request>





<authenticate_r>	::= 	<err> |


		<bsy> |


		<isc> |


		<isss> |


		<ok> <auth_res_length> <auth_response>





<auth_alg_id>	::= <byte>





<auth_req_length>	::= <byte>+





<auth_request>	::= <byte>+





<auth_res_length>	::=	<byte>





<auth_response>	::=	<byte>+ 





<auth_ser>	::=	01H <auth_type> <auth_alg_id>





<auth_ser_ticket>	::=	02H <auth_type> <auth_alg_id> <ticket_length> <ticket>





<auth_type>	::= <byte>





<disconnect>	::=	22H





<disconnect_r>	::=	<err> |


		<ok> 





<end_of_list>	::=	00H





<feature>	::=	<auth_ser> |


		<auth_ser_ticket>





<ident>	::=	20H





<ident_r>	::=	<err> | <bsy> | <isss> |


		<ok> <std> <ver> <rev> <feature>* <end_of_list>





<inter_char>	::=	<byte>





<logoff>	::=	52H





<logoff_r>	::=	<err> |<bsy> |<isss> |<ok>





<nbr_retries>	::=	<byte>





<requests>	::=	<ident> |


		<read> |


		<write> |


		<logon> |


		<security> |


		<logoff> |


		<negotiate> |


		<wait> |


		<terminate> |


		<timing_setup> |


		<disconnect> |


		<authenticate>


		<disconnect> |





<responses>	::=	<ident_r> |


		<read_r > |


		<write_r > |


		<logon_r > |


		<security_r> |


		<logoff_r > |


		<negotiate_r > |


		<wait_r > |


		<terminate_r > |


		<timing_setup_r> |


		<disconnect_r> |


		<authenticate_r>





<resp_to>	::=	<byte>





<rev>	::=	<byte>





<std>	::=	<byte>





<terminate>	::=	212H





<terminate_r>	::=	<err> |


		<ok> 





<ticket_length>	::=	<byte>








<ticket>	::= <byte>++





<timing_setup>	::=	71H <traffic> <inter_char> <resp_to>


		<nbr_retries>





<timing_setup_r>	::= 	<err> |


		<sns> |


		<bsy> |


		<isss> |


		<ok> <traffic> <inter_char> <resp_to>


		<nbr_retries>





<traffic>	::=	<byte>





<ver>	::=	<byte>





A.3 LAYER 2 SYNTAX





<ack>	::=	06H





<crc>	::=	<word16>





<ctrl>	::=	<byte>





<data>	::=	<byte>++





<identity>	::=	<byte>





<length>	::=	<word16>





<nak>	::=	15H





<packet>	::=	<stp> <identity> <ctrl> <seq_nbr> <length> <data> <crc>





<seq_nbr>	::= <byte>





<stp>	::=	EEH


�



ANNEX B - COMMUNICATION EXAMPLE (Layer 7 & Layer 2)





INFORMATIVE











Figures B.1, B.2  and B.23 show an example of a communications session between a utility host and an end device.





�
UTILITY HOST�
�
    CHANNEL�
END DEVICE�
�
�
�
LAYER 7�
LAYER 2�
DIRECTION�
LAYER2�
LAYER7�
�
��1�
IDENTIFICATION REQUEST OUT�
�
�
�
�
�
��2�
�
�
�
�
IDENTIFICATION REQUEST IN�
�
��3�
�
�
��
�
IDENTIFICATION RESPONSE OUT�
�
4�
IDENTIFICATION RESPONSE IN�
�
��
�
�
�
��5�
NEGOTIATE REQUEST OUT�
�
�
�
�
�
��6�
�
�
�
�
NEGOTIATE REQUEST IN�
�
�7�
�
�
��
�
NEGOTIATE RESPONSE OUT�
�
�8�
NEGOTIATE RESPONSE IN�
�
��
�
�
�
��9�
TIMING SETUP REQUEST OUT�
�
�
�
�
�
��10�
�
�
�
�
TIMING SETUP REQUEST IN�
�
�11�
�
�
��
�
TIMING SETUP RESPONSE OUT�
�
�12�
TIMING SETUP RESPONSE IN�
�
��
�
�
�
��13�
LOGON


 REQUEST OUT�
�
�
�
�
�
��14�
�
�
�
�
LOGON 


REQUEST  IN�
�
�15�
�
�
��
�
LOGON 


RESPONSE OUT�
�
�16�
LOGON 


RESPONSE IN�
�
��
�
�
�
��17�
AUTHENTICATE


 REQUEST  OUT�
�
�
�
�
�
��18�
�
�
�
�
AUTHENTICATE 


REQUEST IN�
�
�19�
�
�
��
�
AUTHENTICATE 


RESPONSE OUT�
�
�20�
AUTHENTICATE


 REQUEST IN�
�
��
�
�
�









�EMBED Unknown  \* MERGEFORMAT���





FIGURE B.1 Communication Example


�



�
UTILITY HOST�
�
       CHANNEL�
END DEVICE�
�
�
�
LAYER 7�
LAYER 2�
DIRECTION�
LAYER2�
LAYER7�
�
��21�
READ


 REQUEST OUT�
�
�
�
�
�
��22�
�
�
�
�
READ 


REQUEST  IN�
�
�23�
�
�
��
�
READ 


RESPONSE OUT�
�
�24�
�
�
��
�
�
�
�25�
�
�
��
�
�
�
�26�
�
�
��
�
�
�
�27�
�
�
��
�
�
�
�28�
READ RESPONSE 


IN�
�
��
�
�
�
��29�
LOGOFF REQUEST OUT�
�
�
�
�
�
��30�
�
�
�
�
LOGOFF REQUEST IN�
�
�31�
�
�
��
�
LOGOFF RESPONSE OUT�
�
�32�
LOGOFF RESPONSE IN�
�
��
�
�
�
��33�
TERMINATE


 REQUEST OUT�
�
�
�
�
�
��34�
�
�
�
�
TERMINATE 


REQUEST  IN�
�
�35�
�
�
��
�
TERMINATE 


RESPONSE OUT�
�
�36�
TERMINATE 


RESPONSE IN�
�
��
�
�
�
��37�
DISCONNECT


 REQUEST  OUT�
�
�
�
�
�
��38�
�
�
�
�
DISCONNECT 


REQUEST IN�
�
�39�
�
�
��
�
DISCONNECT 


RESPONSE OUT�
�
�40�
DISCONNECT


 REQUEST IN�
�
��
�
�
�









�EMBED Unknown  \* MERGEFORMAT���





FIGURE B.2 Communication Example Continued





�EMBED MSDraw  \* MERGEFORMAT���





FIGURE B.23 Communication Example Continued


�



ANNEX C - PACKET TRANSMISSION EXAMPLE





INFORMATIVE





Figure C.1 shows the actual packet data being transmitted in Figures B.1, and B.2 and B.3 in Annex B.  Numbers 1) - ??40) refer to the numbers in Figures B.1 and, B.2 and B.3.  All values are specified in hexadecimal format. The following arbitrary information was used.





<std>	::=	02





<ver>	::=	01





<rev>	::=	00





<packet_size>	::=	0040 (64 bytes)





<nbr_packet>	::=	04 (4 packets)





<baud_rate>	::=	08 (19200 baud)





<user_id>	::=	1111





<username>	::=	01 02 03 04 05 06 07 08 09 0A





<password>	::=	01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14





<table_id>	::=	0000





<offset>	::=	000010





<count>	::=	0096 (150 bytes)





<data>	::=	   01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F


		10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F


		20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F


		30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F


		40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F


		50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F


		60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F


		70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F


		80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F


		90 91 92 93 94 95 96





�



1)  ( EE 00 00 00 00 01 20 13 10


2)  ( 06


3)  ( EE 00 00 00 00 11 00 02 01 00 02 01 00 08 30 36 31 37 34 30 33 30 00


       C5 6A


4)  ( 06


5)  ( EE 00 20 00 00 04 60 00 40 04 FD BF


6)  ( 06


7)  ( EE 00 20 00 00 05 00 00 40 04 06 03 1C


8)  ( 06


9)  ( EE 00 00 00 00 05 71 1E 04 04 03 D4 AA


10) ( 06


11) ( EE 00 00 00 00 05 00 1E 04 04 03 63 B4


12) ( 06


13) ( EE 00 20 00 00 0D 50 00 00 41 42 43 44 45 46 47 48 49 4A EE 54


14) ( 06


15) ( EE 00 20 00 00 01 00 80 51


16) ( 06


17) ( EE 00 00 00 00 0B 53 09 00 DF A9 10 4C 37 BC 1E 26 AC BC


18) ( 06


19) ( EE 00 00 00 00 0B 00 09 00 CC C8 09 95 63 9E B3 2C 93 7C


20) ( 06


21) ( EE 00 20 00 00 08 3F 00 01 00 00 10 00 96 2B 50


22) ( 06


23) ( EE 00 E0 02 00 38 00 00 96 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F


       10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27


       28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 09 F0


24) ( 06


25) ( EE 00 80 01 00 38 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47


       48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F


       60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 43 39


26) ( 06


27) ( EE 00 A0 00 00 2A 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F


       80 81 82 83 84 85 86 87 88 98 A8 B8 C8 D8 E8 F0 90 91 92 93 94 95 96 27


       1C 9E


28) ( 06


29) ( EE 00 00 00 00 01 52 86 40


30) ( 06


31) ( EE 00 00 00 00 01 00 11 31


32) ( 06


33) ( EE 00 20 00 00 01 21 0B 61


34) ( 06


35) ( EE 00 20 00 00 01 00 80 51


36) ( 06


37) ( EE 00 00 00 00 01 22 01 33


38) ( 06


39) ( EE 00 00 00 00 01 00 11 31


40) ( 06





FIGURE C.1 Packet Transmission Example


�



ANNEX DC - SERVICE SEQUENCE STATE CONTROL





INFORMATIVENORMATIVE








The period of PSEM communications is defined asin a series of “Service Sequence States”. The use of each service may be restricted to one or more states. Specific services mayalso cause transitions between states. The transition is implemented upon positive acknowledgement of the service. The recognized states include:





Base State :	This is the state at which communication begins. At this point the default data transmission parameters apply.





ID State :	Once the metering device has been identified, this is the state that is entered.





Session State :	When a successful logon has been completed, this is the state achieved.





The relationship between PSEM services and service sequence states is:





Identification Service requests are accepted at the base state only. Acceptance of an identification service request, <ok> transitions communications to the ID state. This service cannot originate from the metering device.





Wait service requests are accepted in the ID and session states. Acceptance of these requests do NOT result in any sequence state changes. This service can originate from either end of the communication channel.





Negotiate and Timing Setup service requests are accepted in the ID state only. Acceptance of these requests do NOT result in any sequence state changes. Negotiated services are NOT implemented until after acceptance. Theseis services can not originate from the metering device.





Timing Setup service requests are accepted in the ID state only. Acceptance of these requests do NOT result in any sequence state changes. Timing Setup services are NOT implemented until after acceptance. This service cannot originate from the metering device.








Logon service requests are accepted inat the ID state only. Acceptance of a logon service request, <ok> transitions communications to the session state. This service cannot originate from the metering device.





Security and Authenticate service requests are accepted inat the session state only. Acceptance of these requests do NOT result in any sequence state changes. Theseis services can not originate from the metering device.





Read and write service requests are accepted in the session state only. Acceptance of these requests do NOT result in any sequence state changes. These services can originate from either end of the communication channel.





Logoff service requests are accepted inat the session state only. Acceptance of a logoff service request, <ok> transitions communications to the ID state. This service can originate from either end of the communication channel.





Terminate service requests are accepted in all states.at the ID and session states. Acceptance of a terminate service request, <ok> transitions communications to the base state. This service can originate from either end of the communication channel.





Disconnect service requests are accepted in all states.at the base, ID and session states. Acceptance of a disconnect service request, <ok> disconnects the communication channel. This service can originate from either end of the communication channel. 





�EMBED Word.Picture.8��������





FIGURE DC.1 Communication State Diagram


�



ANNEX ED - MODIFICATIONS AND EXTENSIONS TO C12.19- 1997Telephone Control Tables





NORMATIVE





This Annex describes modifications to Table 03, ED_MODE STATUS Table, and Table 07, PROCEDURE INNITIATE Table. 





It also describes Decade 90, Telephone Control Tables, which are not currently defined in C12.19-1997.


�
ANNEX E1 - TABLE 03 ED_MODE STATUS TABLE





TABLE 03 ED_MODE STATUS TABLE





Table 03 Data Description





Note: This table definition is consistent with ANSI C12.19-1997 except for the addition of the TAMPER_DETECT_FLAG and the REVERSE_ROTATION_FLAG.





ED_MODE_STATUS_TBL (Table 03) provides the current operating mode and status of various conditions in the end device. It allows for both standard and manufacturer specific status definitions.





TYPE ED_MODE_BFLD = BIT FIELD OF UINT8


	METERING_FLAG			: BOOL(0);


	TEST_MODE_FLAG		: BOOL(1);


	METER_SHOP_MODE_FLAG	: BOOL(2);


	FILLER				: FILL(3..7);


END;





TYPE ED_STD_STATUS1_BFLD = BIT FIELD OF UINT16


	UNPROGRAMMED_FLAG		: BOOL(0);


	CONFIGURATION_ERROR_FLAG	: BOOL(1);


	SELF_CHK_ERROR_FLAG		: BOOL(2);


	RAM_FAILURE_FLAG		: BOOL(3);


	ROM_FAILURE_FLAG		: BOOL(4);


	NONVOL_MEM_FAILURE_FLAG	: BOOL(5);


	CLOCK_ERROR_FLAG		: BOOL(6);


	MEASUREMENT_ERROR_FLAG	: BOOL(7);


	LOW_BATTERY_FLAG		: BOOL(8);


	LOW_LOSS_POTENTIAL_FLAG	: BOOL(9);


	DEMAND_OVERLOAD_FLAG	: BOOL(10);


	POWER_FAILURE_FLAG 		: BOOL(11);


	TAMPER_DETECT_FLAG 		: BOOL(12);


	REVERSE_ROTATION_FLAG 	: BOOL(13);


	FILLER				: FILL(14..15);


END;





TYPE ED_STD_STATUS2_BFLD = BIT FIELD OF UINT8


	FILLER				: FILL(0..7);


END;


TYPE ED_MFG_STATUS_RCD = PACKED RECORD


	ED_MFG_STATUS			: SET(GEN_CONFIG_TBL.DIM_MFG_STATUS_USED);


END;








TYPE ED_MODE_STATUS_RCD = PACKED RECORD


	ED_MODE			: ED_MODE_BFLD;


	ED_STD_STATUS1		: ED_STD_STATUS1_BFLD;


	ED_STD_STATUS2 		: ED_STD_STATUS2_BFLD;


	ED_MFG_STATUS			: ED_MFG_STATUS_RCD; 


END;





TABLE ED_MODE_STATUS_TBL = ED_MODE_STATUS_RCD;





�



Identifier	Value	Definition





ED_MODE_BFLD


	METERING_FLAG	FALSE	End Device is not in Metering mode. It may or may not be accumulating measured or input quantities.


		TRUE	End Device is in Metering mode and is accumulating measured or input quantities.





	TEST_MODE_FLAG	FALSE	End Device is not in Test Mode.


		TRUE	End Device is in Test Mode.





	METER_SHOP_MODE_FLAG	FALSE	End device is not in Meter Shop Mode.


		TRUE	End device is in Meter Shop Mode.





ED_STD_STATUS1_BFLD


	UNPROGRAMMED_FLAG	FALSE	End Device is programmed.


		TRUE	End Device is not programmed or it is in a factory default state.





	CONFIGURATION_ERROR_FLAG


		FALSE	End Device did not detect a configuration error.


		TRUE	End Device did detect a configuration error.





	SELF_CHK_ERROR_FLAG	FALSE	End Device did not detect a self check error.


		TRUE	End Device did detect a self check error.





	RAM_FAILURE_FLAG	FALSE	End Device did not detect a RAM memory failure.


		TRUE	End Device did detect a RAM memory failure.





	ROM_FAILURE_FLAG	FALSE	End Device did not detect a ROM memory failure.


		TRUE	End Device did detect a ROM memory failure.





	NONVOL_MEM_FAILURE_FLAG	FALSE	End Device did not detect a nonvolatile memory failure.


		TRUE	End Device did detect a nonvolatile memory failure.





	CLOCK_ERROR_FLAG	FALSE	End Device did not detect a clock error.


		TRUE	End Device did detect a clock error.





	MEASUREMENT_ERROR_FLAG	FALSE	End Device did not detect a measurement element error.


		TRUE	End Device did detect a measurement element error.





	LOW_BATTERY_FLAG	FALSE	End Device did not detect a low battery error.


		TRUE	End Device did detect a low battery error.





	LOW_LOSS_POTENTIAL_FLAG


		FALSE	End Device did not detect a potential that is below a predetermined value.


		TRUE	End Device did detect a device potential that is below a predetermined value.





	DEMAND_OVERLOAD_FLAG	FALSE	End Device did not detect a demand threshold overload.


		TRUE	End Device did detect a demand threshold overload.





	POWER_FAILURE_FLAG 	FALSE	End Device did not detect a power failure.


		TRUE	End Device did detect a power failure.





	TAMPER_DETECT_FLAG 	FALSE	End Device did not detect tamper activity.


		TRUE	End Device did detect tamper activity.





	REVERSE_ROTATION_FLAG 	FALSE	End Device did not detect reverse rotation.


		TRUE	End Device did detect reverse rotation..





ED_STD_STATUS2_BFLD		Standard status code bit field 2 is a place holder for future expansion.





ED_MFG_STATUS_RCD		Set containing the manufacturer specific status flags.





ED_MODE_STATUS_RCD


	ED_MODE		See ED_MODE_BFLD.


	ED_STD_STATUS1		See ED_STD_STATUS1_BFLD.


	ED_STD_STATUS2		See ED_STD_STATUS2_BFLD.


	ED_MFG_STATUS		See ED_MFG_STATUS_RCD.


�



ANNEX E2 - TABLE 07 - PROCEDURE  INITIATE TABLE 





Note: This Annex describes an additional standard procedure that has been added to Table 07.





PROCEDURE 20 Initiate an Immediate Call





This procedure causes the end device to immediately initiate a call with the phone number specified. Call windows are ignored.





	TBL_PROC_NBR		20		Procedure number.


	PARM_RCD					Defined below.


	RESP_DATA_RCD				Not used.





Parameters





TYPE PARM_RCD = PACKED RECORD


	PHONE_NUMBER_INDEX	: UINT8;


END;





Identifier	Value	Definition





PARM_RCD


	PHONE_NUMBER_INDEX	0..6	Selection of which phone number to use for the call originating procedure. This value is an index to the PHONE_NUMBERS array in table ORIGINATE_PARAMETERS_TBL (Table 93).�



ANNEX E3 - DECADE 90: Telephone Control Tables





This decade contains tables associated with the use ofd to configure a PSEM compatible device with a telephone modem.








TABLE 90 Dimension Telephone Table





Table 90 Data Description





DIM_TELEPHONE_TBL (Table 90) specifies the maximum dimensional values for this decade.





TYPE TELEPHONE_FLAGS_BFLD = BIT FIELD OF UINT8


	ANSWER_FLAG			: BOOL(0);


	S_ANCHOR_DATE_FLAG		: BOOL(1);


	OFFHOOK_DETECT_FLAG		: BOOL(2);


	BIT_RATE			: UINT(3..4);


	ID_IN_PURPOSE		: BOOL(5);


	NO_LOCKOUT_PARM		: BOOL(6);


	FILLER				: FILL(7..7);


END;





TYPE TELEPHONE_RCD = PACKED RECORD


	TELEPHONE_FLAGS		: TELEPHONE_FLAGS_BFLD;


	NBR_ORIGINATE_WINDOWS	: UINT8;


	NBR_SETUP_STRINGS		: UINT8;


	SETUP_STRING_LENGTH		: UINT8;


	PREFIX_LENGTH			: UINT8;


	NBR_ORIGINATE_NUMBERS	: UINT8;


	PHONE_NUMBER_LENGTH		: UINT8;


	NBR_RECURRING_DATES		: UINT8;


	NBR_NON_RECURRRING_DATES	: UINT8;


	NBR_EVENTS			: UINT8;


	NBR_WEEKLY_SCHEDULES	: UINT8;


	NBR_ANSWER_WINDOWS		: UINT8;


	NBR_CALLER_IDS		: UINT8;


	CALLER_ID_LENGTH		: UINT8;





END;





TABLE DIM_TELEPHONE_TBL = TELEPHONE_RCD;





Identifier	Value	Definition





TELEPHONE_FLAGS_BFLD


	ANSWER_FLAG		FALSE	End device is not capable of answering a phone call. 


		TRUE	End device is capable of answering to a phone call.





	S_ANCHOR_DATE_FLAG	FALSE	End device is not capable of accepting a separate telephone schedule anchor date for the Period/Delta RDATE type (recurring date).


		TRUE	End device is capable of accepting a separate telephone schedule anchor date for the Period/Delta RDATE type (recurring date).





	OFFHOOK_DETECT_FLAG	FALSE	End device is not capable of detecting off hook conditions.


		TRUE	End device is capable of detecting off hook conditions.





	BIT_RATE	0	End device is not capable of modifying its bit rate.


		1	End device is capable of modifying globally its originating and answering bit rate.


		2	End device is capable of modifying separately its originating and answering bit rate.


		3	Reserved.





	ID_IN_PURPOSE	FALSE	End device is not capable of including an ID field in CALL_PURPOSE_TBL.


		TRUE	End device is capable of including an ID field in CALL_PURPOSE_TBL (Table 96).





	NO_LOCKOUT_PARM	FALSE	End device is capable of supporting lockout parameters in table ANSWER_PARAMETERS_TBL (Table 95).


		TRUE	End device is not capable of supporting lockout parameters in table ANSWER_PARAMETERS_TBL (Table 95).





TELEPHONE_RCD


	TELEPHONE_FLAGS		See definition above.





	NBR_ORIGINATE_WINDOWS	0..255	Maximum number of originate time window descriptions supported by the end device.





	NBR_SETUP_STRINGS	0..255	Maximum number of setup strings supported by the end device.





	SETUP_STRING_LENGTH	0..255	Maximum length (in bytes) of setup strings supported by the end device.





	PREFIX_LENGTH	0..255	Maximum length (in bytes) of phone number prefix supported by the end device.





	NBR_ORIGINATE_NUMBERS	0..7	Maximum number of originate phone numbers supported by the end device.





	PHONE_NUMBER_LENGTH	0..255	Maximum length (in bytes) of phone numbers supported by the end device.





	NBR_RECURRING_DATES	0..255	Maximum number of recurring dates supported to create the origination schedule.





	NBR_NON_RECURRRING_DATES 0..255	Maximum number of non-recurring dates supported to create the origination schedule.





	NBR_EVENTS	 0..255	Maximum number of events supported to create the origination schedule.





	NBR_WEEKLY_SCHEDULES	 0..255	Maximum number of weekly schedules supported to create the origination schedule.





	NBR_ANSWER_WINDOWS	0..255	Maximum number of answer time window descriptions supported by the end device.





	NBR_CALLER_IDS	0..255	Maximum number of Ccaller IDidentifiers strings supported by the end device.





	CALLER_ID_LENGTH	0..255	Maximum length (in bytes) of Ccaller IDidentifiers strings supported by the end device.


�



TABLE 91 Actual Telephone Table





Table 91 Data Description





ACT_TELEPHONE_TBL (Table 91) contains actual dimension values for this decade.





TABLE ACT_TELEPHONE_TBL = DIM_TELEPHONE_TBL.TELEPHONE_RCD;





Identifier	Value	Definition





TELEPHONE_FLAGS_BFLD


	ANSWER_FLAG		FALSE	End device shall not answer a phone call.


		TRUE	End device may answer a phone call.





	S_ANCHOR_DATE_FLAG	FALSE	End device does not accept a separate telephone schedule anchor date for the Period/Delta RDATE type (recurring date).


		TRUE	End device accepts a separate telephone schedule anchor date for the Period/Delta RDATE type (recurring date).





	OFFHOOK_DETECT_FLAG	FALSE	End device does not currently detect off hook conditions.


		TRUE	End device currently detects off hook conditions.





	BIT_RATE	0	Bit rate can not be controlled.


		1	Answering and originating bit rate can be controlled globally in table 92.


		2	Answering and originating bit rate can be controlled separately in table 93 and 95.


		3	Reserved.





	ID_IN_PURPOSE	FALSE	End device does not currently include an ID field in CALL_PURPOSE_TBL (Table 96).


		TRUE	End device currently includes an ID field in CALL_PURPOSE_TBL (Table 96).





	NO_LOCKOUT_PARM	FALSE	End device currently includes lockout parameters in table ANSWER_PARAMETERS_TBL (Table 95).


		TRUE	End device does not currently include lockout parameters in table ANSWER_PARAMETERS_TBL (Table 95).





TELEPHONE_RCD


	TELEPHONE_FLAGS		See definition above.





	NBR_ORIGINATE_WINDOWS	0..255	Actual number of originate time window descriptions used by the end device.





	NBR_SETUP_STRINGS	0..255	Actual number of setup strings used by the end device.





	SETUP_STRING_LENGTH	0..255	Actual length (in bytes) of setup strings used by the end device.





	PREFIX_LENGTH	0..255	Actual length (in bytes) of phone number prefix used by the end device.





	NBR_ORIGINATE_NUMBERS	0..7	Actual number of originate phone numbers used by the end device.





	PHONE_NUMBER_LENGTH	0..255	Actual length (in bytes) of phone numbers used by the end device.





	NBR_RECURRING_DATES	0..255	Actual number of recurring dates used to create the origination schedule.





	NBR_NON_RECURRRING_DATES 0..255	Actual number of non-recurring dates used to create the origination schedule.





	NBR_EVENTS	 0..255	Actual number of events used to create the origination schedule.





	NBR_WEEKLY_SCHEDULES	 0..255	Actual number of weekly schedules used to create the origination schedule.





	NBR_ANSWER_WINDOWS	0..255	Actual number of answer time window descriptions used by the end device.





	NBR_CALLER_IDS	0..255	Actual number of Ccaller IDidentifiers strings used by the end device.





	CALLER_ID_LENGTH	0..255	Actual length (in bytes) of Caller ID caller identifiers strings used by the end device.


�



TABLE 92 Global Parameters Table





Table 92 Data Description





GLOBAL_PARAMETERS_TBL (Table 92) defines general parameters used both for answering and originating a calls.





TYPE SETUP_STRING_RCD = PACKED RECORD


	SETUP_STRING		: ARRAY[ACT_TELEPHONE_TBL.SETUP_STRING_LENGTH] OF CHAR;


END;





TYPE GLOBAL_PARAMETERS_RCD = PACKED RECORD


	PSEM_IDENTITY		: UINT8;


	IF ACT_(TELEPHONE_TBL.BIT_RATE = 1) THEN


		BIT_RATE	: UINT32;


	END ;


	MODEM_SETUP_STRINGS	: ARRAY[ACT_TELEPHONE_TBL.NBR_SETUP_STRINGS]


				  OF SETUP_STRING_RCD;


END;





TABLE GLOBAL_PARAMETERS_TBL = GLOBAL_PARAMETERS_RCD;





Identifier	Value	Definition





SETUP_STRING_RCD


	SETUP_STRING		Modem setup string used to configure the modem.





GLOBAL_PARAMETERS_RCD


	PSEM_IDENTITY	0..255	Value used by the <identity> field in layer 2.





	BIT_RATE		Bit rate at which the end device will originate or answer a call. Zero denotes an externally defined bit rate.





MODEM_SETUP_STRINGS		An array of Modem Setup Strings 


SETUP_STRING_RCD


	SETUP_STRING		Modem setup string used to configure the modem.





SETUP_STRINGS_RCD


	SETUP_STRINGS		An array of Modem setup string.





	MODEM_PHONE_NUMBERS		See definition above.





�



 TABLE 93 Originate Communication Parameters





Table 93 Data Description





ORIGINATE_PARAMETERS_TBL (Table 93) defines originate configuration. Originate refers to the end device placing calls to a utility host.





TYPE STIME = PACKED RECORD


	CASE GEN_CONFIG_TBL.TM_FORMAT OF


		0: NIL		: NIL;


	1: HOUR	: BCD;


	   MINUTE	: BCD;


		2: HOUR	: UINT8;


	   MINUTE	: UINT8;


		3: D_TIME	: UINT32;


	END;


END;





TYPE DAYS_BFLD = BIT FIELD OF UINT8


	SUNDAY			: BOOL(0);


	MONDAY			: BOOL(1);


	TUESDAY		: BOOL(2);


	WEDNESDAY		: BOOL(3);


	THURSDAY		: BOOL(4);


	FRIDAY			: BOOL(5);


	SATURDAY		: BOOL(6);


	FILLER			: FILL(7..7);


END;





TYPE WINDOW_RCD = PACKED RECORD


	BEGIN_WINDOW_TIME	: STIME;


	WINDOW_DURATION	: STIME; 


	WINDOW_DAYS		: DAYS_BFLD;


END;





TYPE PHONE_NUMBER_RCDTYPE = PACKED RECORD


	PHONE_NUMBER		: ARRAY[ACT_TELEPHONE_TBL.PHONE_NUMBER_LENGTH] OF CHAR;


END;





TYPE PHONE_NUMBERS_RCD = PACKED RECORD


	PREFIX			: ARRAY[ACT_TELEPHONE_TBL.PREFIX_LENGTH] OF CHAR;


	PHONE_NUMBERS		: ARRAY[ACT_TELEPHONE_TBL.NBR_ORIGINATE_NUMBERS]


				  OF PHONE_NUMBER_TYPE;


END;





TYPE ORIGINATE_PARAMETERS_RCD = PACKED RECORD


	IF ACT_TELEPHONE_TBL.BIT_RATE = 2 THEN


		ORIGINATE_BIT_RATE	: UINT32;


	END;


	DIAL_DELAY			: UINT8;


	ORIGINATE_PHONE_NUMBERS	: PHONE_NUMBERS_RCD;


	WINDOWS			: ARRAY[ACT_TELEPHONE_TBL.NBR_ORIGINATE_WINDOWS]


					  OF WINDOW_RCD; 


END;





TABLE ORIGINATE_PARAMETERS_TBL = ORIGINATE_PARAMETERS_RCD;





�
Identifier	Value	Definition





STIME


	HOUR	0..23	Hour of the day.


		24..31	Unassigned.





	MINUTE	0..59	Minute of hour.


		60..63 	Unassigned.





	D_TIME		Time in seconds since 00:00:00 local time.





DAYS_BFLD


	SUNDAY	FALSE	This wWindow does nots start each Sunday.


		TRUE	This window does start each Sunday.





	MONDAY	FALSE	This window does not start each Monday.


		TRUE	This window does start each Monday.


	Windows start each Monday.





	TUESDAY	FALSE	This window does not start each Tuesday.


		TRUE	This window does start each Tuesday.


	Windows start each Tuesday.


	WEDNESDAY		FALSE	This window does not start each Wednesday.


		TRUE	This window does start each Wednesday.


Windows start each Wednesday.


	THURSDAY		FALSE	This window does not start each Thursday.


		TRUE	This window does start each Thursday.


Windows start each Thursday.


	FRIDAY		FALSE	This window does not start each Friday.


		TRUE	This window does start each Friday.


Windows start each Friday.


	SATURDAY		FALSE	This window does not start each Saturday.


		TRUE	This window does start each Saturday.Windows start each Saturday.





WINDOW_RCD


	BEGIN_WINDOW_TIME 		Time Window definition start time.


The time of day the window starts.





	WINDOW_DURATION		The duration of the windowTime Window definition duration.





	WINDOW_DAYS		See definitionDAYS_BFLD above. Defines the days that a window can start. based on 


BEGIN_WINDOW_TIME.





PHONE_NUMBER_RCDTYPE


	PHONE_NUMBER		Phone number to use to place a call.





PHONE_NUMBERS_RCD


	PREFIX		This number will be inserted at the beginning of every phone number before beginning dialing.





	PHONE_NUMBERS		An array of originate phone numbers.





SETUP_STRING_RCD


	SETUP_STRING		Modem setup string used to configure the modem.





SETUP_STRINGS_RCD


	SETUP_STRINGS		An array of Modem setup string.





ORIGINATE_PARAMETERS_RCD


	ORIGINATE_BIT_RATE		Bit rate at which the end device will originate a call. Zero denotes an externally defined bit rate.





	DIAL_DELAY	0..255	Delay in seconds the end device will wait before dialing after going off-hook.





	ORIGINATE_PHONE_NUMBERS		See definitionPHONE_NUMBER_RCD above.





	WINDOWS		An array of call originate windows.Time Windows specify periods when calls may be originate by the end device. See definition above.





�



TABLE 94 Originate Schedule Table





Table 94 Data Description





ORIGINATE_SCHEDULEING_TBL (Table 94) is used to configure when and why a metering device originates a call. by the end device to place calls via the public switched telephone network.





TYPE CTRL_BFLD = BIT FIELD OF UINT8


	PRIMARY_PHONE_NUMBER	: UINT(0..2);


	FILLER				: FILL(3..3);


	SECONDARY_PHONE_NUMBER	: UINT(4..6);


	USE_WINDOWS			: BOOL(7);


END;





TYPE RECURRING_DATES_RCD = PACKED RECORD


	ORIGINATE_DATE		: RDATE;


	START_TIME			: TIME;


	ORIGINATE_CTRL		: CTRL_BFLD;


END;





TYPE NON_RECURRRING_DATES_RCD = PACKED RECORD


	ORIGINATE_DATE		: DATE;


	START_TIME			: TIME;


	ORIGINATE_CTRL		: CTRL_BFLD;


END;





TYPE EVENTS_RCD = PACKED RECORD


	ED_STD_STATUS1		: ED_MODE_STATUS_TBL.ED_STD_STATUS1_BFLD;


	ED_STD_STATUS2		: ED_MODE_STATUS_TBL.ED_STD_STATUS2_BFLD;


	ED_MFG_STATUS			: ED_MODE_STATUS_TBL.ED_MFG_STATUS_RCD;


	ORIGINATE_CTRL		: CTRL_BFLD;


END;





TYPE WEEKLY_SCHEDULE_RCD = PACKED RECORD


	DAYS				: ORIGINATE_PARAMETERS_TBL.DAYS_BFLD;


	START_TIME			: TIME;


	ORIGINATE_CTRL		: CTRL_BFLD;


END;





TYPE ORIGINATE_SCHEDULEING_RCD = PACKED RECORD


	IF ACT_TELEPHONE_TBL.S_ANCHOR_DATE_FLAG THEN


		S_ANCHOR_DATE		: DATE;


	END;





	RECURRING_DATES		: ARRAY[ACT_TELEPHONE_TBL.NBR_RECURRING_DATES]


					  OF RECURRING_DATES_RCD;


	NON_RECURING_DATES		: ARRAY[ACT_TELEPHONE_TBL.NBR_NON_RECURRRING_DATES]


					  OF NON_RECURRRING_DATES_RCD;


	EVENTS				: ARRAY[ACT_TELEPHONE_TBL.NBR_EVENTS]


  OF EVENTS_RCD;


	WEEKLY_SCHEDULES		: ARRAY[ACT_TELEPHONE_TBL.NBR_WEEKLY_SCHEDULES]


					  OF WEEKLY_SCHEDULE_RCD;


END;





TABLE ORIGINATE_SCHEDULEING_TBL = ORIGINATE_SCHEDULEING_RCD;


�



Identifier	Value	Definition





CTRL_BFLD


	PRIMARY_PHONE_NUMBER	0..7	Selection of the primary phone number to use to originate the call. This value is an index into to the PHONE_NUMBERS array in tatheble ORIGINATE_PARAMETERS_TBL (Table 93). Seven (7) indicates that no call should take place.





	SECONDARY_PHONE_NUMBER	0..7	Selection of the secondary phone number to use to originate a call. This value is an index into the PHONE_NUMBERS array in tablethe ORIGINATE_PARAMETERS_TBL (Table 93). Seven (7) indicates that no secondary number is provided.





	USE_WINDOWS	FALSE	An oThe call will be placed immediately. Originate Ttime wWindow will not be used to restrict the period available to place this call. The call will be placed immediately.





		TRUE	An The Originate tTime wWindow will be used to restrict the period available to place this call. Calls originating outside a window will be delayed until the next open window.





RECURRING_DATES_RCD


	ORIGINATE_DATE		Recurring date at which call originate procedures should begin.





	START_TIME		Time at which call originate procedures should begin.





	ORIGINATE_CTRL		See CTRL_BFLDdefinition above.





NON_RECURRRING_DATES_RCD


	ORIGINATE_DATE		Specific date at which a call originate procedure should begin.





	START_TIME		Time at which a call originate procedure should begin.





	ORIGINATE_CTRL		See CTRL_BFLDdefinition above.





EVENTS_RCD


	ED_STD_STATUS1		Standard status events whicho initiate should initiate a call originate procedure.


		FALSE	No call should take place for this status bit.


		TRUE	A call should take place if an event is detected for this status bit.





	ED_STD_STATUS2		Standard status events which o should initiate a call originate procedure.


		FALSE	No call should take place for this status bit.


		TRUE	A call should take place if a event is detected for this status bit.





	ED_MFG_STATUS		Manufacturer status events whicho should initiate a call originate procedure.


		FALSE	No call should take place for this status bit.


		TRUE	A call should take place if an event is detected for this status bit.


	


	ORIGINATE_CTRL		See CTRL_BFLDdefinition above..





WEEKLY_SCHEDULE_RCD


	DAYS		Days of the week in which the call originate procedure should begin.





	START_TIME		Time at which the call originate procedure should begin.





	ORIGINATE_CTRL		See CTRL_BFLD above.








ORIGINATE_SCHEDULEING_RCD


	S_ANCHOR_DATE		A separate telephone schedule anchor date if present is only used in conjunction with an RDATE type recurring date using the PERIOD/OFFSET mechanism. If this table contains an anchor date it is used with RDATE,.If if not present, and an anchor date is provided in table 54 (CALENDAR_TBL) then RDATE willmay use that anchor date. If neither anchor date is present then the anchor date is as defined by the manufacturer. 


WEEKLY_SCHEDULE_RCD


	DAYS		Set defining days of the week on which the window may start





	START_TIME		Time at which call originate procedure should begin.





	ORIGINATE_CTRL		See definition above.





	RECURRING_DATES		Array of recurring call origination dates.





	NON_RECURING_DATES		Array of non recurring call origination dates.





	EVENTS 		Array of call origination trigger events.





	WEEKLY_SCHEDULES 		Array of call origination days.


�



TABLE 95 Answer Communication Parameters





Table 95 Data Description





ANSWER_PARAMETERS_TBL (Table 95) defines the answer configuration for receiving calls placed by a utility host. Answer refers to calls placed by a utility host to an end device.





TYPE CALLER_ID_RCD = PACKED RECORD


	CALLER_ID	 		: ARRAY[ACT_TELEPHONE_TBL.CALLER_ID_LENGTH] OF CHAR;


END;





TYPE ANSWER_PARAMETERS_RCD = PACKED RECORD


	IF ACT_TELEPHONE_TBL.BIT_RATE = 2 THEN


		ANSWER_BIT_RATE	: UINT32;


	END;


	IF NOT ACT_TELEPHONE_TBL.NO_LOCKOUT_PARM THEN


		LOCKOUT_DELAY	: UINT8;


		RETRY_ATTEMPTS	: UINT8;


		RETRY_LOCKOUT_TIME	: UINT8;


	END;


	NBR_RINGS			: UINT8;





	IF ACT_TELEPHONE_TBL.NBR_ANSWER_WINDOWS > 0 THEN


		NBR_RINGS_OUTSIDE	: UINT8;


	END;





	CALLER_IDSS			: ARRAY[ACT_TELEPHONE_TBL.NBR_CALLER_IDS]


					  OF CALLER_ID_RCD;


	WINDOWS			: ARRAY[ACT_TELEPHONE_TBL.NBR_ANSWER_WINDOWS]


					  OF ORIGINATE_PARAMETERS_TBL.WINDOW_RCD;


END;





TABLE ANSWER_PARAMETERS_TBL = ANSWER_PARAMETERS_RCD;





Identifier	Value	Definition





CALLER_ID_RCD


	CALLER_ID 		Caller IDidentification string. Incoming calls must have a valid caller IDid for the call to be answered.





CALLER_IDS_RCD


	CALLER_IDS		Array of Caller identification string.





ANSWER_PARAMETERS_RCD


	ANSWER_BIT_RATE		Bit rate at which the end device will answer a call. Zero indicates an externally defined bit rate.





	LOCKOUT_DELAY	0..255	Number of minutes to lockout call answering after detecting a voice call.





	RETRY_ATTEMPTS 	0..255	Maximum number of consecutive security violations allowed before lockout.





	RETRY_LOCKOUT_TIME	0..255	Minutes to lockout logons after security retry attempts exceeded.





	NBR_RINGS	0..255	The number of rings to wait before  answering while inside athe tTime wWindow. or Time Window is not used. A vValue of 00 means do not to answer.





	NBR_RINGS_OUTSIDE	0..255	The number of rings to answer while outside athe tTime wWindow. AV value of 0 means do not to answer.





	CALLER_IDS		An array of caller IDs.See definition above.





	WINDOWS		An array of answer time windows.Time Windows specify periods when calls may be answered by the end device.





			Calls will be answered by the end device after the specified number of inside rings while inside an answer time window. Calls will be answered by the end device after the specified number of outside rings while outside an answer time window.


�



TABLE 96 Call Purpose





Table 96 Data Description





CALL_PURPOSE_TBL (Table 96) indicates the purposereason for purpose for the most recent or current call originated by the end device.





TYPE CALL_PURPOSE_BFLD = BIT FIELD OF UINT16


	POWER_OUTAGE			:BOOL(0);


	POWER_RESTORAL		:BOOL(1);


	SCHEDULED_CALL		:BOOL(2);


	STATUS_CALL			:BOOL(3);


	IMMEDIATE_CALL		:BOOL(4);


	FILLER				:FILL(5..11);


	MANUFACTURER_PURPOSES	:UINT(12..15);


END;





TYPE CALL_PURPOSE_RCD = PACKED RECORD


	CALL_PURPOSE			: CALL_PURPOSE_BFLD;


	CALL_TRIGGER_STATUS		: ED_MODE_STATUS_TBL.ED_MODE_STATUS_RCD;


	IF ACT_TELEPHONE_TBL.ID_IN_PURPOSE THEN


		IDENT			: DEVICE_IDENT_TBL.IDENT_RCD;


	END;


END;





TABLE CALL_PURPOSE_TBL = CALL_PURPOSE_RCD;





Identifier	Value	Definition





CALL_PURPOSE_BFLD


	POWER_OUTAGE		This phone call was triggered by the detection of a power outage.





	POWER_RESTORAL		This phone call was triggered by the detection of a power restoration.





	SCHEDULED_CALL		This phone call is a normal call.





	STATUS_CALL		This phone call was triggered by an change in the status record.





	IMMEDIATE_CALL		This phone call was triggered by an immediate call procedure.





	MANUFACTURER_PURPOSES		This field if non-zero indicates that the phone call was triggered by a manufacturer defined purpose.





CALL_PURPOSE_RCD


	CALL_PURPOSE		See definitions of CALL_PURPOSE_BFLD above. 





	IDENT		Identity of the call originating device (Table 5).





	CALL_TRIGGER_STATUS		If the STATUS_CALL bit is TRUE then this field indicates which status bit change(s) caused the call. The field is in the image of ED_MODE_STATUS_TBL.





�



TABLE 97 Call Status





Table 97 Data Description





CALL_STATUS_TBL (Table 97) indicates the status of the most recent calls to each defined phone number.





TYPE CALL_STATUS_RCD = PACKED RECORD


	CALL_STATUS_ARRAY	: ARRAY[ACT_TELEPHONE_TBL.NBR_ORIGINATE_NUMBERS]


				  OF UINT8;


END;





TABLE CALL_STATUS_TBL = CALL_STATUS_RCD;





Identifier	Value	Definition





CALL_STATUS__RCD


	CALL_STATUS_ARRAY		Status or disposition of the most recent call to each phone number. Entries are defined as follows:


		0	No phone call made


		1	Phone call in progress


		2	Dialing


		3	Waiting for a connection


		4	Communicating


		5	Completed normally


		6	Not completed


		7	Not completed, Line busy


		8	Not completed, No dial tone


		9	Not completed, Line cut


		10	Not completed, No connection


		11	Not completed, No modem response








�



PROCEDURE 20 Initiate An Immediate Call





This procedure causes the end device to immediately initiate a call with the phone number specified. Call windows are ignored.





	TBL_PROC_NBR		20		Procedure number.


	PARM_RCD					Defined below.


	RESP_DATA_RCD				Not used.





Parameters





TYPE PARM_RCD = PACKED RECORD


	PHONE_NUMBER_INDEX	: UINT8;


END;





Identifier	Value	Definition





PARM_RCD


	PHONE_NUMBER_INDEX	0..6	Selection of which phone number to use for the call originating procedure. This value is an index to the PHONE_NUMBERS array in table ORIGINATE_PARAMETERS_TBL (Table 93).


�



ANNEX E4 - History & Event Log Codes





Following codes extend those already defined in ANNEX B "HISTORY & EVENT LOG CODES" of ANSI C12.19-1987 standard.





Code	Event		Argument





30	Metering mode started		None


31	Metering mode stopped		None


32	Test mode started		None


33	Test mode stopped		None


34	Meter shop mode started		None


35	Meter shop mode stopped		None


36	Meter reprogrammed 		None


37	Configuration error detected	None


38	Self check error detected		None


39	RAM failure detected		None


40	ROM failure detected		None


41	Nonvolatile memory failure detected	None


42	Clock error detected 		None


43	Measurement error detected 	None


44	Low battery detected 		None


45	Low loss potential detected 	None


46	Demand overload detected 		None


47	Tamper attempt detected 		None


48	Reverse rotation detected 		None


�
 


ANNEX FE - CRC EXAMPLES





INFORMATIVE





Trace





This example shows the actual bit manipulations performed in calculation of the frame check sequence (CRC) for an example PSEM packet in compliance with ANSI C12.18.





packet without crc       = ee 00 00 00 00 01 20


              = 11101110 00000000 00000000 00000000 00000000 00000001 00100000 00000000 00000000


LSBit First     01110111 00000000 00000000 00000000 00000000 10000000 00000100 00000000 00000000


XOR FF          11111111 11111111





Start Tx      = 10001000 11111111 00000000 00000000 00000000 10000000 00000100 00000000 00000000


Apply P(x)      10001000 00010000 1


                00000000 11101111 10000000 00000000 00000000 10000000 00000100 00000000 00000000


Apply P(x)               10001000 00010000 1


                00000000 01100111 10010000 10000000 00000000 10000000 00000100 00000000 00000000


Apply P(x)                1000100 00001000 01


                00000000 00100011 10011000 11000000 00000000 10000000 00000100 00000000 00000000


Apply P(x)                 100010 00000100 001


                00000000 00000001 10011100 11100000 00000000 10000000 00000100 00000000 00000000


Apply P(x)                      1 00010000 00100001


                00000000 00000000 10001100 11000001 00000000 10000000 00000100 00000000 00000000


Apply P(x)                        10001000 00010000 1


                00000000 00000000 00000100 11010001 10000000 10000000 00000100 00000000 00000000


Apply P(x)                             100 01000000 100001


                00000000 00000000 00000000 10010001 00000100 10000000 00000100 00000000 00000000


Apply P(x)                                 10001000 00010000 1


                00000000 00000000 00000000 00011001 00010100 10000000 00000100 00000000 00000000


Apply P(x)                                    10001 00000010 0001


                00000000 00000000 00000000 00001000 00010110 10000000 00000100 00000000 00000000


Apply P(x)                                     1000 10000001 00001


                00000000 00000000 00000000 00000000 10010111 10000000 00000100 00000000 00000000


Apply P(x)                                          10001000 00010000 1


                00000000 00000000 00000000 00000000 00011111 10000000 10000100 00000000 00000000


Apply P(x)                                             10001 00000010 0001


                00000000 00000000 00000000 00000000 00001110 00001010 10010100 00000000 00000000


Apply P(x)                                              1000 10000001 00001


                00000000 00000000 00000000 00000000 00000110 10001011 10011100 00000000 00000000


Apply P(x)                                               100 01000000 100001


                00000000 00000000 00000000 00000000 00000010 11001011 00011000 00000000 00000000


Apply P(x)                                                10 00100000 0100001


                00000000 00000000 00000000 00000000 00000000 11101011 01011010 00000000 00000000


Apply P(x)                                                   10001000 00010000 1


                00000000 00000000 00000000 00000000 00000000 01100011 01001010 10000000 00000000


Apply P(x)                                                    1000100 00001000 01


                00000000 00000000 00000000 00000000 00000000 00100111 01000010 11000000 00000000


Apply P(x)                                                     100010 00000100 001


                00000000 00000000 00000000 00000000 00000000 00000101 01000110 11100000 00000000


Apply P(x)                                                        100 01000000 100001


                00000000 00000000 00000000 00000000 00000000 00000001 00000110 01100100 00000000


Apply P(x)                                                          1 00010000 00100001


                00000000 00000000 00000000 00000000 00000000 00000000 00010110 01000101 00000000


Apply P(x)                                                               10001 00000010 0001


                00000000 00000000 00000000 00000000 00000000 00000000 00000111 01000111 00010000


Apply P(x)                                                                 100 01000000 100001


                00000000 00000000 00000000 00000000 00000000 00000000 00000011 00000111 10010100


Apply P(x)                                                                  10 00100000 0100001


                00000000 00000000 00000000 00000000 00000000 00000000 00000001 00100111 11010110


Apply P(x)                                                                   1 00010000 00100001


                00000000 00000000 00000000 00000000 00000000 00000000 00000000 00110111 11110111


XOR FF                                                                         11001000 00001000


MSBit First                                                                    00010011 00010000


crc                                                                            = 1310


�



C Code Example





The following is an example of C code which calculates the <crc> field in a manner compliant with C12.18 section 4.7 and figure C-1. This code is provided as an example only, and is not required for compliance with C12.18.





#include <stdio.h>





unsigned short crc16(octet, crc)


unsigned char octet;


unsigned short crc;


{


   int                 i;





   for (i = 8; i; i--)


   {


      if (crc & 0x0001)


      {


	 crc >>= 1;


         if (octet & 0x01) crc |= 0x8000;


	 crc = crc ^ 0x8408;              /* 0x1021 inverted = 1000 0100 0000 0001 */


	 octet >>= 1;


      }


      else


      {


	 crc >>= 1;


         if (octet & 0x01) crc |= 0x8000;


	 octet >>= 1;


      }


   }


   


   return crc;


}





unsigned short crc(size, packet)


int size;


unsigned char *packet;


{


   int i;


   unsigned short crc;





   crc = (~packet[1] << 8) | (~packet[0] & 0xFF);





   for (i=2 ; i<size; i++)


      crc = crc16(packet[i], crc);





   crc = crc16(0x00, crc);


   crc = crc16(0x00, crc);


   crc = ~crc;


   crc = crc >> 8 | crc << 8;





   return crc;


}





main()


{


   unsigned char packet[] =  { 0xEE, 0x00, 0x00, 0x00, 0x00, 0x01, 0x20 };


   printf("Crc = %04x \n", crc(sizeof(packet), packet));


}


�



ANNEX GF - ERROR HANDLING





INFORMATIVE





Example 1: Lost Packet - Retry Successful





Sender�
Traffic�
Receiver�
�
��Send Packet�
�
Packet Lost�
�
�Response Timeout


Retry 1�
�
Packet Received�
�
�Ack Received


�
�
Send ACK�
�






Example 2: Lost Packet - Retry Unsuccessful





Sender�
Traffic�
Receiver�
�
��Send Packet�
�
Packet Lost�
�
��Response Timeout


Retry 1�
�
Packet Lost�
�
��Response Timeout


Retry 2�
�
Packet Lost�
�
��Response Timeout


Retry 3�
�
Packet Lost�
�
Go to Base State�
�
�
�






Example 3: Corrupted Packet - Retry Successful





Sender�
Traffic�
Receiver�
�
��Send Packet�
�
Packet Corrupted�
�
�NAK received�
�
Send NAK�
�
�Retry 1�
�
Packet Received�
�
�ACK received�
�
Send ACK�
�



�



Example 4: Corrupted Packet - Retry Unsuccessful





Sender�
Traffic�
Receiver�
�
��Send Packet�
�
Packet Corrupted�
�
�NAK received�
�
Send NAK�
�
��Retry 1�
�
Packet Corrupted�
�
�NAK received�
�
Send NAK�
�
��Retry 2�
�
Packet Corrupted �
�
�NAK received�
�
Send NAK�
�
��Retry 3�
�
Packet Corrupted�
�
�NAK received�
�
Send NAK�
�
Go to Base State�
�
�
�






Example 5: Lost ACK





Sender�
Traffic�
Receiver�
�
�Send Packet�
�
Packet Received�
�
��ACK Lost


�
�
Send ACK�
�
�Response Timeout


Retry 1�
�
Duplicate Packet Received


Discard Packet�
�
�Ack Received


�
�
Send ACK�
�



�



 ANNEX E5G - DEFAULT SETS FOR DECADE TABLES





NORMATIVE





Addition to C12.19 ANNEX C�


The following values are assigned to the decade and decade+1 table values based upon the value of the TABLE 00 variable DEFAULT_SET_USED.








Variable�
DEFAULT_SET_USED


�
�
�
1�
2�
3�
4�
�
TABLE 91�
�
�
�
�
�
ANSWER_FLAG�
0�
0�
1�
1�
�
S_ANCHOR_DATE_FLAG�
0�
0�
0�
0�
�
OFFHOOK_DETECT_FLAG�
1�
1�
1�
1�
�
BIT_RATE�
1�
1�
1�
1�
�
ID_IN_PURPOSE�
1�
1�
1�
1�
�
NO_LOCKOUT_PARM�
0�
0�
0�
0�
�
NBR_ORIGINATE_WINDOWS�
2�
2�
2�
2�
�
NBR_SETUP_STRINGS�
1�
1�
1�
1�
�
SETUP_STRING_LENGTH�
30�
30�
30�
30�
�
PREFIX_LENGTH�
6�
6�
6�
6�
�
NBR_ORIGINATE_NUMBERS�
1�
2�
2�
3�
�
PHONE_NUMBER_LENGTH�
30�
30�
30�
30�
�
NBR_RECURRING_DATES�
0�
0�
0�
0�
�
NBR_NON_RECURRING_DATES�
1�
2�
2�
3�
�
NBR_EVENTS�
1�
2�
2�
3�
�
NBR_WEEKLY_SCHEDULES�
1�
2�
2�
3�
�
NBR_ANSWER_WINDOWS�
2�
2�
2�
2�
�
NBR_CALLER_IDS�
0�
0�
0�
0�
�
CALLER_ID_LENGTH�
0�
0�
0�
0�
�



�



ANNEX E6H - INDICIES FOR PARTIAL TABLE ACCESS





NORMATIVE





For purposes of this standard the indices for “PARTIAL TABLE ACCESS” defined in C12.19-1997 are considered informative only. The following values are for use with the partial table access method identified as index-count.





TABLE 090 - DIM_TELEPHONE_TBL�
�
�
�
�
�
�
�
�
�
TELEPHONE_FLAGS�
0�
�
�
�
�
�
�
�
�
NBR_ORIGINATE_WINDOWS�
1�
�
�
�
�
�
�
�
�
NBR_SETUP_STRINGS�
2�
�
�
�
�
�
�
�
�
SETUP_STRING_LENGTH�
3�
�
�
�
�
�
�
�
�
PREFIX_LENGTH�
4�
�
�
�
�
�
�
�
�
NBR_ORIGINATE_NUMBERS�
5�
�
�
�
�
�
�
�
�
PHONE_NUMBER_LENGTH�
6�
�
�
�
�
�
�
�
�
NBR_RECURRING_DATES�
7�
�
�
�
�
�
�
�
�
NBR_NON_RECURRING_DATES�
8�
�
�
�
�
�
�
�
�
NBR_EVENTS�
9�
�
�
�
�
�
�
�
�
NBR_WEEKLY_SCHEDULES�
10�
�
�
�
�
�
�
�
�
NBR_ANSWER_WINDOWS�
11�
�
�
�
�
�
�
�
�
NBR_CALLER_IDS�
12�
�
�
�
�
�
�
�
�
CALLER_ID_LENGTH�
13�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
TABLE 091 - ACT_TELEPHONE_TBL�
�
�
�
�
�
�
�
�
�
TELEPHONE_FLAGS�
0�
�
�
�
�
�
�
�
�
NBR_ORIGINATE_WINDOWS�
1�
�
�
�
�
�
�
�
�
NBR_SETUP_STRINGS�
2�
�
�
�
�
�
�
�
�
SETUP_STRING_LENGTH�
3�
�
�
�
�
�
�
�
�
PREFIX_LENGTH�
4�
�
�
�
�
�
�
�
�
NBR_ORIGINATE_NUMBERS�
5�
�
�
�
�
�
�
�
�
PHONE_NUMBER_LENGTH�
6�
�
�
�
�
�
�
�
�
NBR_RECURRING_DATES�
7�
�
�
�
�
�
�
�
�
NBR_NON_RECURRING_DATES�
8�
�
�
�
�
�
�
�
�
NBR_EVENTS�
9�
�
�
�
�
�
�
�
�
NBR_WEEKLY_SCHEDULES�
10�
�
�
�
�
�
�
�
�
NBR_ANSWER_WINDOWS�
11�
�
�
�
�
�
�
�
�
NBR_CALLER_IDS�
12�
�
�
�
�
�
�
�
�
CALLER_ID_LENGTH�
13�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
TABLE 092 -


GLOBAL_PARAMETERS_TBL�
�
�
�
�
�
�
�
�
�
BIT_RATE�
0�
�
�
�
�
�
�
�
�
PSEM_IDENTITY�
1�
�
�
�
�
�
�
�
�
MODEM_SETUP_STRINGS�
2�
�
�
�
�
�
�
�
�
SETUP_STRING�
2�
[n]�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
TABLE 093 -


ORIGINATE_PARAMETERS_TBL�
�
�
�
�
�
�
�
�
�
ORIGINATE_BIT_RATE�
0�
�
�
�
�
�
�
�
�
DIAL_DELAY�
1�
�
�
�
�
�
�
�
�
ORIGINATE_PHONE_NUMBERS�
2�
�
�
�
�
�
�
�
�
PREFIX�
2�
0�
�
�
�
�
�
�
�
PHONE_NUMBERS�
2�
1�
�
�
�
�
�
�
�
PHONE_NUMBER�
2�
1�
[n]�
�
�
�
�
�
�
WINDOWS�
3�
�
�
�
�
�
�
�
�
BEGIN_WINDOW_TIME�
3�
[n]�
0�
�
�
�
�
�
�
WINDOW_DURATION�
3�
[n]�
1�
�
�
�
�
�
�
WINDOW_DAYS�
3�
[n]�
2�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
TABLE 094 -


ORIGINATE_SCHEDULING_TBL�
�
�
�
�
�
�
�
�
�
S_ANCHOR_DATE�
0�
�
�
�
�
�
�
�
�
RECURRING_DATES�
1�
�
�
�
�
�
�
�
�
RECURRING_DATES (Item)�
1�
[n]�
�
�
�
�
�
�
�
ORIGINATE_DATE�
1�
[n]�
0�
�
�
�
�
�
�
START_TIME�
1�
[n]�
1�
�
�
�
�
�
�
ORIGINATE_CTRL�
1�
[n]�
2�
�
�
�
�
�
�
NON_RECURRING_DATES�
2�
�
�
�
�
�
�
�
�
NON_RECURRING_DATES (Item)�
2�
[n]�
�
�
�
�
�
�
�
ORIGINATE_DATE�
2�
[n]�
0�
�
�
�
�
�
�
START_TIME�
2�
[n]�
1�
�
�
�
�
�
�
ORIGINATE_CTRL�
2�
[n]�
2�
�
�
�
�
�
�
EVENTS�
3�
�
�
�
�
�
�
�
�
EVENTS (Item)�
3�
[n]�
�
�
�
�
�
�
�
ED_STD_STATUS1�
3�
[n]�
0�
�
�
�
�
�
�
ED_STD_STATUS2�
3�
[n]�
1�
�
�
�
�
�
�
ED_MFG_STATUS�
3�
[n]�
2�
�
�
�
�
�
�
ORIGINATE_CTRL�
3�
[n]�
3�
�
�
�
�
�
�
WEEKLY_SCHEDULES�
4�
�
�
�
�
�
�
�
�
WEEKLY_SCHEDULES (Item)�
4�
[n]�
�
�
�
�
�
�
�
DAYS�
4�
[n]�
0�
�
�
�
�
�
�
START_TIME�
4�
[n]�
1�
�
�
�
�
�
�
ORIGINATE_CTRL�
4�
[n]�
2�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
TABLE 095 -


ANSWER_PARAMETERS_TBL�
�
�
�
�
�
�
�
�
�
ANSWER_BIT_RATE�
0�
�
�
�
�
�
�
�
�
LOCKOUT_DELAY�
1�
�
�
�
�
�
�
�
�
RETRY_ATTEMPTS�
2�
�
�
�
�
�
�
�
�
RETRY_LOCKOUT_TIME�
3�
�
�
�
�
�
�
�
�
NBR_RINGS�
4�
�
�
�
�
�
�
�
�
NBR_RINGS_OUTSIDE�
5�
�
�
�
�
�
�
�
�
CALLER_IDS�
6�
�
�
�
�
�
�
�
�
CALLER_ID�
6�
[n]�
�
�
�
�
�
�
�
WINDOWS�
7�
�
�
�
�
�
�
�
�
WINDOWS (Item)�
7�
[n]�
�
�
�
�
�
�
�
BEGIN_WINDOW_TIME�
7�
[n]�
0�
�
�
�
�
�
�
WINDOW_DURATION�
7�
[n]�
1�
�
�
�
�
�
�
WINDOW_DAYS�
7�
[n]�
2�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
TABLE 096 - CALL_PURPOSE_TBL�
�
�
�
�
�
�
�
�
�
CALL_PURPOSE�
0�
�
�
�
�
�
�
�
�
CALL_TRIGGER_STATUS�
1�
�
�
�
�
�
�
�
�
ED_MODE�
1�
0�
�
�
�
�
�
�
�
ED_STD_STATUS1�
1�
1�
�
�
�
�
�
�
�
ED_STD_STATUS2�
1�
2�
�
�
�
�
�
�
�
ED_MFG_STATUS�
1�
3�
�
�
�
�
�
�
�
IDENTIFICATION (BCD)�
1�
4�
0�
�
�
�
�
�
�
IDENTIFICATION (CHAR)�
1�
4�
1�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
TABLE 097 - CALL_STATUS_TBL�
�
�
�
�
�
�
�
�
�
CALL_STATUS_ARRAY�
0�
�
�
�
�
�
�
�
�
CALL_STATUS_ARRAY	(Item)�
0�
[n]�
�
�
�
�
�
�
�
�



ANNEX HI - DATA ENCRYPTION STANDARD





This annex gives an implementation example of the Data Encryption Standard (ANSI Std X3.92-1981) and explains the way to use it with ANSI C12.21 services.





Usage





The Identification service is used to notify the initiator of the communication of the usage of authentication algorithm. The first step done by the initiator is the transmission of an Identification request to the target. The target responds with 0 as <auth_alg_id> and a random value as <ticket>.





To be authenticated, the initiator transmit an Authenticate request with the key id selected and an encrypted value. This value is the result of applying the DES algorithm to the <ticket> and the selected key.





The target will decrypt this value with its own key and validate the result. If this validation fails, an <isc> is returned in the Authenticate response. Otherwise this encrypted value is used as a ticket to authenticate itself. This ticket is encrypted to produce an other encrypt value. The result is then transmitted back to the initiator in the Authenticate response.





The following definitions clarify the use of the Identification and Authentication service.





In Identification response


<auth_algm_id>	::=	00


<ticket>	::=	<byte>*	{8 bytes random value}





In Authentication request


<auth_request>	::=	<key id> <ini_auth_vector>


<key_id>	::=	<byte>	{Index of the key selected.}


<ini_auth_vector>	::=	<byte>*	{8 bytes, <ticket> encrypted.}





In Authentication response


<auth_response>	::=	<key id> <tar_auth_vector>


<key_id>	::=	<byte>	{Index of the key selected.}


<tar_auth_vector>	::=	<byte>*	{8 bytes, <ini_auth vector> encrypted.}





�EMBED Word.Picture.8���





Legal Issues





Cryptographic devices implementing this standard may be covered by U.S. and foreign patents issued to the International Business Machines Corporation. However, IBM has granted nonexclusive, royalty-free licenses under the patents to make, use and sell apparatus which complies with the standard. The terms, conditions and scope of the license are set out in notices published in the May 13, 1975 and August 31, 1976 issues of the Official Gazette of the United States Patent and Trademark Office (9434 O"G" 452 and 949 O.G. 1717).





Implementation





The Data Encryption Standard (DES) algorithm, adopted by the U.S. government in 1977, is a block cipher that transforms 64-bit data blocks under a 56-bit secret key, by means of permutation and substitution. The following is a description of how to use the DES algorithm to encrypt one 64-bit block. 





Step 1





Get a 64-bit key.





Step 2





Perform the following permutation on the 64-bit key. The most significant bit of each bytes is discarded, reducing the key to 56 bits. Bit 1 of the permuted block is bit 57 of the original key, bit 2 is bit 49, and so on with bit 56 being bit 4 of the original key.





57 49 41 33 25 17  9  1 58 50 42 34 26 18


10  2 59 51 43 35 27 19 11  3 60 52 44 36


63 55 47 39 31 23 15  7 62 54 46 38 30 22


14  6 61 53 45 37 29 21 13  5 28 20 12  4





Split the permuted key into two halves. The first 28 bits are called C[0] and the last 28 bits are called D[0].





Start with i = 1.





Step 3, 4





Perform one or two circular left shifts on both C[i-1] and D[i-1] to get C[i] and D[i], respectively. The number of shifts per iteration are given in the table below.





Iteration #   1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16


Left Shifts   1  1  2  2  2  2  2  2  1  2  2  2  2  2  2  1





Step 5





Permute the concatenation C[i]D[i] as indicated below. This will yield K[i], which is 48 bits long.





14 17 11 24  1  5  3 28 15  6 21 10


23 19 12  4 26  8 16  7 27 20 13  2


41 52 31 37 47 55 30 40 51 45 33 48


44 49 39 56 34 53 46 42 50 36 29 32





Loop back to Step 3 until K[16] has been calculated.





Step 6





Get a 64-bit data block. If the block is shorter than 64 bits, it should be padded as appropriate for the application.





Step 7





Perform the following permutation on the data block.





58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4


62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8


57 49 41 33 25 17  9 1 59 51 43 35 27 19 11 3


61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7





Split the block into two halves. The first 32 bits are called L[0], and the last 32 bits are called R[0].





Start with i = 1.





Step 8





Expand the 32-bit R[i-1] into 48 bits according to the bit-selection function below.





32  1  2  3  4  5  4  5  6  7  8  9


 8  9 10 11 12 13 12 13 14 15 16 17


16 17 18 19 20 21 20 21 22 23 24 25


24 25 26 27 28 29 28 29 30 31 32  1





Step 9





Exclusive-or E(R[i-1]) with K[i].





Step 10





Break E(R[i-1]) xor K[i] into eight 6-bit blocks. Bits 1-6 are B[1], bits 7-12 are B[2], and so on with bits 43-48 being B[8].





Substitute the values found in the S-boxes for all B[j]. Start with j = 1. All values in the S-boxes should be considered 4 bits wide. Take the 1st and 6th bits of B[j] together as a 2-bit value indicating the row in S[j]. Take the 2nd through 5th bits of B[j] together as a 4-bit value indicating the column in S[j].





S[1]


14  4 13  1  2 15 11  8  3 10  6 12  5  9  0  7


 0 15  7  4 14  2 13  1 10  6 12 11  9  5  3  8


 4  1 14  8 13  6  2 11 15 12  9  7  3 10  5  0


15 12  8  2  4  9  1  7  5 11  3 14 10  0  6 13





S[2]


15  1  8 14  6 11  3  4  9  7  2 13 12  0  5 10


 3 13  4  7 15  2  8 14 12  0  1 10  6  9 11  5


 0 14  7 11 10  4 13  1  5  8 12  6  9  3  2 15


13  8 10  1  3 15  4  2 11  6  7 12  0  5 14  9





S[3]


10  0  9 14  6  3 15  5  1 13 12  7 11  4  2  8


13  7  0  9  3  4  6 10  2  8  5 14 12 11 15  1


13  6  4  9  8 15  3  0 11  1  2 12  5 10 14  7


 1 10 13  0  6  9  8  7  4 15 14  3 11  5  2 12





S[4]


 7 13 14  3  0  6  9 10  1  2  8  5 11 12  4 15


13  8 11  5  6 15  0  3  4  7  2 12  1 10 14  9


10  6  9  0 12 11  7 13 15  1  3 14  5  2  8  4


 3 15  0  6 10  1 13  8  9  4  5 11 12  7  2 14





S[5]


 2 12  4  1  7 10 11  6  8  5  3 15 13  0 14  9


14 11  2 12  4  7 13  1  5  0 15 10  3  9  8  6


 4  2  1 11 10 13  7  8 15  9 12  5  6  3  0 14


11  8 12  7  1 14  2 13  6 15  0  9 10  4  5  3





S[6]


12  1 10 15  9  2  6  8  0 13  3  4 14  7  5 11


10 15  4  2  7 12  9  5  6  1 13 14  0 11  3  8


 9 14 15  5  2  8 12  3  7  0  4 10  1 13 11  6


 4  3  2 12  9  5 15 10 11 14  1  7  6  0  8 13





S[7]


 4 11  2 14 15  0  8 13  3 12  9  7  5 10  6  1


13  0 11  7  4  9  1 10 14  3  5 12  2 15  8  6


 1  4 11 13 12  3  7 14 10 15  6  8  0  5  9  2


 6 11 13  8  1  4 10  7  9  5  0 15 14  2  3 12





S[8]


13  2  8  4  6 15 11  1 10  9  3 14  5  0 12  7


 1 15 13  8 10  3  7  4 12  5  6 11  0 14  9  2


 7 11  4  1  9 12 14  2  0  6 10 13 15  3  5  8


 2  1 14  7  4 10  8 13 15 12  9  0  3  5  6 11





Step 11





Permute the concatenation of B[1] through B[8] as indicated below.





16  7 20 21 29 12 28 17


 1 15 23 26  5 18 31 10


 2  8 24 14 32 27  3  9


19 13 30  6 22 11  4 25





Step 12





Exclusive-or the resulting value with L[i-1]. Thus, all together, your R[i] = L[i-1] xor P(S[1](B[1])...S[8](B[8])), where B[j] is a 6-bit block of E(R[i-1]) xor K[i].





Step 13





L[i] = R[i-1].





Loop back to Step 8 until K[16] has been applied.





Step 14





Perform the following permutation on the block R[16]L[16].





40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31


38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29


36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27


34 2 42 10 50 18 58 26 33 1 41  9 49 17 57 25





To decrypt, use the same process, but just use the keys K[i] in reverse order. That is, instead of applying K[1] for the first iteration, apply K[16], and then K[15] for the second, on down to K[1].





�



Code Example





The following is an example of C code which encrypt a data block of 64 bits using a key of 56 bits. This code is provided as an example only, and is not required for compliance with the Data Encryption Standard.





#include <stdio.h>


typedef unsigned char uint8;





static uint8    key[64] = {


   1,1,0,0,1,1,0,1,0,0,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,


   1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,1,1,0,0,0,0,1,1,1,0


};





static uint8    data[64] = {


   1,1,0,0,1,1,0,1,0,0,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,


   1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,1,1,0,0,0,0,1,1,1,0


};





static uint8    perm1[56] = {


   57, 49, 41, 33, 25, 17,  9,  1, 58, 50, 42, 34, 26, 18,


   10,  2, 59, 51, 43, 35, 27, 19, 11,  3, 60, 52, 44, 36,


   63, 55, 47, 39, 31, 23, 15,  7, 62, 54, 46, 38, 30, 22,


   14,  6, 61, 53, 45, 37, 29, 21, 13,  5, 28, 20, 12, 4


};





static uint8    perm2[56] = {


    2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,


   16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,  1,


   30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,


   44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 29


};





static uint8    perm3[48] = {


   14, 17, 11, 24,  1,  5,  3, 28, 15,  6, 21, 10, 23, 19, 12,  4,


   26,  8, 16,  7, 27, 20, 13,  2, 41, 52, 31, 37, 47, 55, 30, 40,


   51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32


};





static uint8    perm4[64] = {


   58, 50, 42, 34, 26, 18, 10,  2, 60, 52, 44, 36, 28, 20, 12,  4,


   62, 54, 46, 38, 30, 22, 14,  6, 64, 56, 48, 40, 32, 24, 16,  8,


   57, 49, 41, 33, 25, 17,  9,  1, 59, 51, 43, 35, 27, 19, 11,  3,


   61, 53, 45, 37, 29, 21, 13,  5, 63, 55, 47, 39, 31, 23, 15,  7,


};





static uint8    perm5[48] = {


   32,  1,  2,  3,  4,  5,  4,  5,  6,  7,  8,  9,  8,  9, 10, 11,


   12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21,


   22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32,  1,


};





static uint8    perm6[32] = {


   16,  7, 20, 21, 29, 12, 28, 17,  1, 15, 23, 26,  5, 18, 31, 10,


    2,  8, 24, 14, 32, 27,  3,  9, 19, 13, 30,  6, 22, 11,  4, 25,


};





static uint8    perm7[64] = {


   40,  8, 48, 16, 56, 24, 64, 32, 39,  7, 47, 15, 55, 23, 63, 31,


   38,  6, 46, 14, 54, 22, 62, 30, 37,  5, 45, 13, 53, 21, 61, 29,


   36,  4, 44, 12, 52, 20, 60, 28, 35,  3, 43, 11, 51, 19, 59, 27,


   34,  2, 42, 10, 50, 18, 58, 26, 33,  1, 41,  9, 49, 17, 57, 25,


};





static uint8    sboxes[8][64] = {


   {


      14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,


      4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,


   },{


      15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,


      0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,


   },{


      10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,


      13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,


   },{


      7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,


      10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,


   },{


      2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,


      4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,


   },{


      12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,


      9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,


   },{


      4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,


      1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,


   },{


      13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,


      7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,


}};





static uint8    keys[16][48];





/**************************************************************************/


void            Permutation(dst, src, lgn, perm_table)


uint8          *dst;


uint8          *src;


uint8           lgn;


uint8          *perm_table;


{


   uint8           tmp[64];





   if (src == NULL)


   {


      src = tmp;


      memcpy(src, dst, 64);


   }





   for (; lgn > 0; lgn--, dst++, perm_table++)


      *dst = src[*perm_table - 1];


}





/**************************************************************************/


void            Xor(dst, src, lgn)


uint8          *dst;


uint8          *src;


uint8           lgn;


{


   for (; lgn > 0; lgn--, dst++, src++)


      *dst ^= *src;


}





/**************************************************************************/


void            Copy(dst, src, lgn)


uint8          *dst;


uint8          *src;


int             lgn;


{


   for (; lgn > 0; lgn--, dst++, src++)


      *dst = *src;


}





/**************************************************************************/


void            SBoxes(dst, src, sbox)


uint8          *dst;


uint8          *src;


uint8          *sbox;


{


   int          i;





   i = src[4];


   i |= src[3] << 1;


   i |= src[2] << 2;


   i |= src[1] << 3;


   i |= src[5] << 4;


   i |= src[0] << 5;





   i = sbox[i];





   dst[3] = i & 1;


   dst[2] = i >> 1 & 1;


   dst[1] = i >> 2 & 1;


   dst[0] = i >> 3 & 1;


}





/**************************************************************************/


void            des(_key, _data, _encrypt)


uint8          *_key;


uint8          *_data;


int             _encrypt;


{


   uint8           key[64], data[64], right[48];


   int             i, j;





   Permutation(key, _key, 56, perm1);





   for (i = 1; i <= 16; i++)


   {


      Permutation(key, NULL, 56, perm2);





      if (i != 1 && i != 2 && i != 9 && i != 16)


         Permutation(key, NULL, 56, perm2);





      Permutation(keys[_encrypt ? i - 1 : 16 - i], key, 48, perm3);


   }





   Permutation(data, _data, 64, perm4);





   for (i = 1; i <= 16; i++)


   {


      Permutation(right, data + 32, 48, perm5);


      Xor(right, keys[i - 1], 48);





      for (j = 0; j < 8; j++)


         SBoxes(right + 4 * j, right + 6 * j, sboxes[j]);





      Permutation(right, NULL, 32, perm6);


      Xor(right, data, 32);


      Copy(data, data + 32, 32);


      Copy(data + 32, right, 32);


   }





   Copy(_data, data + 32, 32);


   Copy(_data + 32, data, 32);


   Permutation(_data, NULL, 64, perm7);


}





/**************************************************************************/


void            main()


{


   des(key, data, 1);


   des(key, data, 0);


}�



Trace Example





This example shows the bit manipulations performed in each step in compliance with the Data Encryption Standard.





Initialize keys


         Step 1: Key = 1100110100111000111110000001111110000000111111100010001100001110


 Step 2: Permutation = 00110101001001010110011000101110100010101001101011111110


    Step 3: Rotation = 01101010010010101100110001001101000101010011010111111101


     Step 5: keys[1] = 010001101011000010010011010000111001110101101111


    Step 3: Rotation = 11010100100101011001100010001010001010100110101111111011


     Step 5: keys[2] = 110010000110001100100101011111001101011101011010


    Step 3: Rotation = 10101001001010110011000100010100010101001101011111110111


    Step 4: Rotation = 01010010010101100110001000111000101010011010111111101110


     Step 5: keys[3] = 100000011001111100011001100111011111010001101010


    Step 3: Rotation = 10100100101011001100010001100001010100110101111111011101


    Step 4: Rotation = 01001001010110011000100011010010101001101011111110111010


     Step 5: keys[4] = 010001010011001011100011111011001111111001100000


     ...


     Skipping keys[5] to keys[15]


     ...


    Step 3: Rotation = 00110101001001010110011000101110100010101001101011111110


    Step 5: keys[16] = 101000100100110101101000111111101110111001001010





Process data block


        Step 6: Data = 1100110100111000111110000001111110000000111111100010001100001110


 Step 7: Permutation = 0010010100101110101010010100100100110101011001101010111111101000


 Step 8: Permutation = 000110101010101100001101010101011111111101010000


         Step 9: Xor = 010111000001101110011110000101100110001000111111


     Step 10: SBoxes = 10110011000011110010010111111011


Step 11: Permutation = 11001010110100100111111011001011


        Step 12: Xor = 11101111111111001101011110000010


       Step 13: Copy = 0011010101100110101011111110100011101111111111001101011110000010


 Step 8: Permutation = 011101011111111111111001011010101111110000000101


         Step 9: Xor = 101111011001110011011100000101100010101101011111


     Step 10: SBoxes = 01110110111101000010111010100010


Step 11: Permutation = 01010100001000111001011110011111


        Step 12: Xor = 01100001010001010011100001110111


       Step 13: Copy = 1110111111111100110101111000001001100001010001010011100001110111


 Step 8: Permutation = 101100000010101000001010100111110000001110101110


         Step 9: Xor = 001100011011010100010011000000101111011111000100


     Step 10: SBoxes = 10111001110001110010101001101000


Step 11: Permutation = 10011000111110010101011110000010


        Step 12: Xor = 01110111000001011000000000000000


       Step 13: Copy = 0110000101000101001110000111011101110111000001011000000000000000


 Step 8: Permutation = 001110101110100000001011110000000000000000000000


         Step 9: Xor = 011111111101101011101000001011001111111001100000


     Step 10: SBoxes = 10001110100111000111010111100111


Step 11: Permutation = 01100100100111100011110111111001


        Step 12: Xor = 00000101110110110000010110001110


       Step 13: Copy = 0111011100000101100000000000000000000101110110110000010110001110


     ...


     Skipping round 5 to 15


     ...


 Step 8: Permutation = 011010101101011101010010101010100111111110101101


         Step 9: Xor = 110010001001101000111010010101001001000111100111


     Step 10: SBoxes = 11001111100000101111011101110111


Step 11: Permutation = 01100011111111101110110110111000


        Step 12: Xor = 01101110110110110110010001000010


       Step 13: Copy = 1101011011101001010100111111011001101110110110110110010001000010


     Step 14: Result = 0011100011011011110001100111000010011010011001101111111110110010


�



ANNEX IJ - I COMMAND OPERATIONAL DESCRIPTION





INFORMATIVE





This annex describes the "I command" currently used in many a heterogeneous protocol environments. This annex is informative and is up to each manufacturer to implement it or not.








The problem





EndElectric metering devices that are calling into athis host application, may not all support the ANSI C12.21 protocol. This makes it extremely difficult for the host application to initiate a communication session with the endmetering device if the protocol is not known. Sending different commands from different protocols is not an efficient way of identifying the metering device type. Dedicating phone lines for specific metering device types is not cost effective.








The solution





When an endmetering device calls into a host application and the communication channel is established, the host application will transmitissue a singlelone ASCII uppercase “I”. The endmetering device will respond with a 15 character ASCII string that identifies the protocol. This string may be followed by an optional carriage return. From this information, the host application will be able to properly perform a communication session with the meter.





The “I” command does not use the data link layer as described in this standard. The meter will only need to recognize this command during the initial portion of a call-originate procedure. Itand will not respond to the “I” commandrequire support after a ANSI C12.21 sessioncommand is establisedissued.








Request:





<I_command>	::=	49H





Response:





<I_command_r>	::=	<byte>+15 [0DH]	{ASCII text “PSEM          ”}





- �PAGE \\* Roman�66� -








PACKET 1





ACK





ACK





PACKET 1





PACKET 1





ACK





PACKET 1





ACK





PACKET 1





ACK





PACKET 1





ACK





PACKET 1





ACK





PACKET 1





ACK





PACKET 1





ACK





PACKET 1





ACK





PACKET 1





ACK





PACKET 1





ACK





PACKET 2





ACK





PACKET 3





ACK





PACKET 1





ACK





PACKET 1





ACK





PACKET 1





ACK





PACKET 1





ACK





PACKET 1





ACK





PACKET 1





ACK











