Unique Universal Identifiers

by Dr. Martin J. Burns, Editor�Customer Interface Working Group, EPRI UCA 2 Forum� � SAVEDATE * MERGEFORMAT �02/22/98 10:19 AM�

This brief document is a contribution by the UCA Forum Customer Interface Working Group to the discussion on universal identifiers in the "Universal Node Identifiers System Working Group", UNISWG, in California.

The document proposes a flexible mechanism for constructing unconstrained hierarchical identifiers that translate to compact binary form for transfer via communications, and, a simple printable form for display in barcodes and labels. The approach combines two well-known standards – Object Identifiers from OSI’s ASN.1 and Basic Encoding Rules (ISO/IEC 8824/8825) and “Base64” encoding from InterNIC RFC 2045.

We recommend that the UNISWG incorporate the adoption of this approach which has the benefits of flexibility, simplicity, and compactness. In addition, there is an existing and reliable registration authority for assigning unique entity ids. The proposed approach allows entities to independently and privately construct guaranteed unique and traceable identifiers without creation of any new standards or registration authorities.

1.	Introduction

Universal Ids are desirable to simplify identifying and maintaining networks of devices and information. It is recognized that such Ids should be somewhat orthogonal and not composite so that, for instance, devices can be replaced without entire communications networks needing reconfiguration. Universal Ids may include:

Physical ID	identifies a single instance of a manufactured device. Typically a serial number

Logical ID	identifies a logical instance of a device over a communications network

Communications ID	identifies a point in a communications network. Typically a communications address.

2.	Requirements

The following are suggested requirements for evaluation of alternatives for universal ids.

Global instance uniqueness	It should be possible to construct an instance for which there is a guarantee that there is no other instance in existence.

Traceability	With an ID, and a suitable authority, any instance of an ID can be traced back to its owner or creator.

Unbounded (scaleability)	The form of the id should be scaleable. It should not be of limited size with limited length fields that might constrain its use and evolution.

Application independent	The ID should be independent of the application of the device or network in which it exists.

Maintainability	The ID should be maintainable and easy to record.

Registration authority	There should be a reliable authority with which Ids can be registered to allow for the traceability requirement above.

Printable	The ID should be printable or have a readily translatable printable form so that it can be displayed and read by humans (and bar coded).

3.	Types of unique identifiers

The following schemes have been used to create unique identifiers for devices and logical instances:

Universally unique methods:

UUID	Universally unique identifiers are 128 bit numbers that are “statistically” unique. A random number generator makes the likelihood of the generation of any given number twice vanishingly small. The key advantage of this approach is that no regulatory authority is needed. Any entity can independently generate unique numbers. The shortcoming of this approach is that there is no traceability of the numbers generated to the id generator.

Registration authority based methods:

The following methods are based on a Registration Authority who’s administrative duty is to ensure that numbering methods remain unique for all organization’s seeking to register products. Numbering identifiers through authorities enables traceability to the product manufacturer and therefore enables a consistent approach to tracing product ownership or origin on a network. Some examples are as follows:

UPC	Universal product codes are used in packaging, warehousing, and retail sales. There is a worldwide organization that manages the design and registration of these codes.

ObjectID	Object Ids are hierarchical numbers that enable a flexible and extensible numbering system for objects traceable internationally to a unified international numbering scheme. These objects can represent a logical instance of a device or function on a communications network. They are a construct of the International Standards Organization’s Open Systems Interconnection, OSI, model.

DeviceID 	Device Ids are similar to serial numbers placed on equipment by manufacturers. However under the recommended approach the manufacturers Id would be prefixed to their own serial numbering. This enables the identification of individually distinguishable equipment from different vendors.

4.	Registration authorities

The following organizations are registration authorities for numbering various IDs:

IEEE – Network Interface Cards (NIC) and Cellular telephones

Internet Engineering Task Force (IETF) Internet Domain Names and IP addressing

International Organization for Standardization (ISO)

American National Standards Institute (ANSI)

National Institute of Standards and Technology (NIST)

EAN/UCC register manufacturer and other “UPC” codes

US Department of Defense, DOD, CAGE Codes

CEBus® Industry Council (CIC)

National Science Federation (NSF) Domain Names

5.	Recommendation

The recommendation of this paper is to use object identifiers for universal Ids for manufacturer, product instance ID, and, device logical ID.

The registration authority for these Ids should be ANSI/NIST/ISO�. A manufacturer gets an object ID from ANSI. The form and fees for this service can be obtained from ANSI and are described below.

Each manufacturer then defines its own namespace by defining branches off the object identifier tree below the registered name it then owns.

To obtain a printable or human readable version mime base-64, RFC2045 (section 6.8), is used.

The balance of this section describes the nature and use of the proposed universal identifier solution.

5.1	Vendor id

A unique vendor identifier is obtained through the ISO naming registration authority in the vendors country of origin. In the US, this registration authority is ANSI� NOTEREF _Ref410877394 \h � * MERGEFORMAT �1�:

"ANSI is the registration authority for the US for organization names under the global registration process established by ISO and CCITT. The registration service provides an unambiguous organization identifier. The service conforms with CCITT X.660|ISO/IEC 9834-1, which describes a hierarchy of registration authorities. Information objects are unambiguously identified by constructed names composed of one component from each level of the Registration Authority hierarchy under which the information object is registered. This name is unique, since each component along the path through the hierarchy from the root to the registered object is guaranteed to be unique within the scope of the Registration Authority assigning that name component. The ANSI organization name registration service assigns one name component.

ANSI maintains a data base that is searched with every new registration request to ensure that duplicate identifiers are never registered.

A formal procedure has been developed within ANSI to administer this process. These procedures specify the syntax of names assigned by this Registration Authority, describe the way in which applications for Organization names are handled, including mechanisms for assuring the assigning of unique names at this level in the hierarchy, and provide for the assignment of Organization names. The procedure is available from the Registration Coordinator (Phone: 212 642 4884, Fax: 212 398 0023, e-mail: mmaas@ansi.org).

In order to recover costs, ANSI charges a one-time registration fee for this service (See Fee Schedule)."

Object identifiers are obtained with the prefix:

{joint-iso-ccitt(2) country(16) US(840) organization(1)}�2.16.840.1

5.2	Device ID

A globally unique device id is obtained by appending it a vendor proprietary numbering scheme below the vendors arc of the object tree. The manufacturers only requirement is to guarantee not to reuse an ObjectID. For example, if the vendors registered ObjectID is vendorID, and, the vendor wants to number his devices by groupID , productID, and serialno, then the combined ID would be:

2.16.840.1.<vendor id>.<groupID>.<productID>.<serialno>

5.3	ServiceDeliveryPoint ID

A service delivery point ID is obtained similar to the DeviceID. The vendor arc is that of the entity that distributes the utility.

5.4	Universal ID formats

This section describes the formats for these recommended universal identifiers in binary transfer, visible display or printed, and meter bar-coding specific applications.

5.4.1	Binary representation

The Ids described in this document are represented in binary form using the Basic Encoding Rules (BER) (IEC standard 8825) object identifier encoding.

5.4.2	Visible representation

The use of MIME base64 encoding permits the binary representation to be translated to a human readable form (see RFCs 2045,1251 that describes MIME encoding).

5.4.3	Visible representation for “Meter Labels”

For meter labels, there are three components to a bar code that exists – a meter test code, the meter id, and a checksum. The visible representation (section 5.6) is used as the meter ID. The other fields would retain their current definition and use.

<MeterTest><Base64 encoded visible ObjectID><CC>

Where:

<MeterTest> 	Currently used meter test code identifier

<Base64 encoded visible ObjectID>	Base64 encoded visible version of ObjectID

<CC>	Checksum used in Code 39 bar coding

5.5	Some examples

This section contains several examples of universal Ids. Assume manufacturer “A” has registered with ANSI and received the ObjectID:

String�
Base 64�
Binary�
�
2.16.840.1.123456�
YIZIAYfEQA==�
60 86 48 01 87 C4 40�
�

Assume manufacturer “A” has minted his one millionth product, construct deviceID:

String�
Base 64�
Binary�
�
2.16.840.1.123456.1000000�
YIZIAYfEQL2EQA==�
60 86 48 01 87 C4 40 BD 84 40�
�

Assume that he makes many products. Product number 1, serial number 1:

String�
Base 64�
Binary�
�
2.16.840.1.123456.1.1�
YIZIAYfEQAEB�
60 86 48 01 87 C4 40 01 01�
�

Product number 1, serial number 9999999:

String�
Base 64�
Binary�
�
2.16.840.1.123456.1.9999999�
YIZIAYfEQAGE4qx/�
60 86 48 01 87 C4 40 01 84 E2 AC 7F�
�

Product number 99999, serial number 9999999:

String�
Base 64�
Binary�
�
2.16.840.1.123456.99999.9999999�
YIZIAYfEQIaNH4TirH8=�
60 86 48 01 87 C4 40 86 8D 1F 84 E2 AC 7F�
�

Product group 23, product number 999, serial number 9999999 (note that in this extreme case the printable version extends to 20 digits (16 without the YIZI prefix all numbers have):

String�
Base 64�
Binary�
�
2.16.840.1.123456.23.999.9999999�
YIZIAYfEQBeHZ4TirH8=�
60 86 48 01 87 C4 40 17 87 67 84 E2 AC 7F�
�
6.	Some techincal details

This section describes the basic mathematics of the formats for representing the universal identifiers.

6.1	Object IDs

This section describes an overview of the construction of object identifiers. It has been extracted from a discussion offered by RSA Data Security�

Object identifier value�
Meaning�
�
{ 1 2 }�
ISO member bodies�
�
{ 1 2 840 }�
US (ANSI)�
�
{ 1 2 840 1 }�
Corporate identifier�
�
{ 1 2 840 1 113549 }�
RSA Data Security, Inc.�
�

1.	The first octet has value 40 x value1 + value2. (This is unambiguous, since value1 is limited to values 0, 1, and 2; value2 is limited to the range 0 to 39 when valueb1 is 0 or 1; and, according to X.208, n is always at least 2.)

2.	The following octets, if any, encode value3, …, valuen. Each value is encoded base 128, most significant digit first, with as few digits as possible, and the most significant bit of each octet except the last in the value's encoding set to "1."

6.2	Base 64 Encoding

This section is an extract of RFC2045 section 6.8 in its entirety (for reference only, rely only on the actual RFC):

The Base64 Content-Transfer-Encoding is designed to represent arbitrary sequences of octets in a form that need not be humanly readable. The encoding and decoding algorithms are simple, but the encoded data are consistently only about 33 percent larger than the unencoded data. This encoding is virtually identical to the one used in Privacy Enhanced Mail (PEM) applications, as defined in RFC 1421.

A 65-character subset of US-ASCII is used, enabling 6 bits to be represented per printable character. (The extra 65th character, "=", is used to signify a special processing function.)

NOTE: This subset has the important property that it is represented identically in all versions of ISO 646, including US-ASCII, and all characters in the subset are also represented identically in all versions of EBCDIC. Other popular encodings, such as the encoding used by the uuencode utility, Macintosh binhex 4.0 [RFC-1741], and the base85 encoding specified as part of Level 2 PostScript, do not share these properties, and thus do not fulfill the portability requirements a binary transport encoding for mail must meet.

The encoding process represents 24-bit groups of input bits as output strings of 4 encoded characters. Proceeding from left to right, a 24-bit input group is formed by concatenating 3 8bit input groups. These 24 bits are then treated as 4 concatenated 6-bit groups, each of which is translated into a single digit in the base64 alphabet. When encoding a bit stream via the base64 encoding, the bit stream must be presumed to be ordered with the most-significant-bit first.

That is, the first bit in the stream will be the high-order bit in the first 8bit byte, and the eighth bit will be the low-order bit in the first 8bit byte, and so on.

Each 6-bit group is used as an index into an array of 64 printable characters. The character referenced by the index is placed in the output string. These characters, identified in Table 1, below, are selected so as to be universally representable, and the set excludes characters with particular significance to SMTP (e.g., ".", CR, LF) and to the multipart boundary delimiters defined in RFC 2046 (e.g., "-").

Table 1: The Base64 Alphabet

 Value Encoding Value Encoding Value Encoding Value Encoding

 0 A 17 R 34 i 51 z

 1 B 18 S 35 j 52 0

 2 C 19 T 36 k 53 1

 3 D 20 U 37 l 54 2

 4 E 21 V 38 m 55 3

 5 F 22 W 39 n 56 4

 6 G 23 X 40 o 57 5

 7 H 24 Y 41 p 58 6

 8 I 25 Z 42 q 59 7

 9 J 26 a 43 r 60 8

 10 K 27 b 44 s 61 9

 11 L 28 c 45 t 62 +

 12 M 29 d 46 u 63 /

 13 N 30 e 47 v

 14 O 31 f 48 w (pad) =

 15 P 32 g 49 x

 16 Q 33 h 50 y

The encoded output stream must be represented in lines of no more than 76 characters each. All line breaks or other characters not found in Table 1 must be ignored by decoding software. In base64 data, characters other than those in Table 1, line breaks, and other white space probably indicate a transmission error, about which a warning message or even a message rejection might be appropriate under some circumstances. Special processing is performed if fewer than 24 bits are available at the end of the data being encoded. A full encoding quantum is always completed at the end of a body. When fewer than 24 input bits are available in an input group, zero bits are added (on the right) to form an integral number of 6-bit groups. Padding at the end of the data is performed using the "=" character. Since all base64 input is an integral number of octets, only the following cases can arise:

the final quantum of encoding input is an integral multiple of 24 bits; here, the final unit of encoded output will be an integral multiple of 4 characters with no "=" padding,

the final quantum of encoding input is exactly 8 bits; here, the final unit of encoded output will be two characters followed by two "=" padding characters, or

the final quantum of encoding input is exactly 16 bits; here, the final unit of encoded output will be three characters followed by one "=" padding character.

Because it is used only for padding at the end of the data, the occurrence of any "=" characters may be taken as evidence that the end of the data has been reached (without truncation in transit). No such assurance is possible, however, when the number of octets transmitted was a multiple of three and no "=" characters are present.

Any characters outside of the base64 alphabet are to be ignored in base64-encoded data. Care must be taken to use the proper octets for line breaks if base64 encoding is applied directly to text material that has not been converted to canonical form. In particular, text line breaks must be converted into CRLF sequences prior to base64 encoding. The important thing to note is that this may be done directly by the encoder rather than in a prior canonicalization step in some implementations.

NOTE: There is no need to worry about quoting potential boundary delimiters within base64-encoded bodies within multipart entities because no hyphen characters are used in the base64 encoding.

7.	Ids demonstration program

A demonstration program written in Visual Basic accompanies this document. The program provides the ability to translate universal ids from:

String dot notation:	2.16.840.1

To the printable Base 64: 	“YIZIAQ==”

Or the binary bytes:	60 86 48 01

And back again to dot notation:	2.16.840.1

This document is accompanied by the VB5 project, source code, and an executable to run the program.

� ANSI, “Procedures for registering organization names in the United States of America under the Joint-ISO-CCIT arc", http://web.ansi.org/public/services/reg_org.html.

�Burton S. Kaliski Jr.,”A Layman's Guide to a Subset of ASN.1, BER, and DER”, An RSA Laboratories Technical Note, Revised November 1, 1993*

� STYLEREF Title * MERGEFORMAT �Unique Universal Identifiers�	� SAVEDATE \@ "MM/dd/yy h:mm AM/PM" * MERGEFORMAT �02/22/98 10:20 AM�	� PAGE �1�

	� FILENAME * MERGEFORMAT �UniIds.doc�

